Biomimetic Implant Surface Functionalization with Concentrated Platelet-Rich Fibrin
Year 2025,
Volume: 28 Issue: 2, 174 - 186, 30.06.2025
Aparna Ayyalasomayajula
,
Muthukumar Santhanakrishnan
,
Sri Vidhya Marimuthu
,
Ravindranath Dhulipalla
,
Ramanarayana Boyapati
Abstract
Objective: With high long-term survival and success rates, implant-supported oral rehabilitation has progressively expanded the treatment options available to edentulous patients. However, osseointegration may be impacted by certain medical conditions. In order to enhance osseointegration and encourage fibrin adherence, surfaces with particular micro- and nanotopographies and biomimetic properties have been developed. Recently, there has been interest in a potential strategy that involves using the patient's autologous blood to functionalise the implant surface just prior to placement. The objective of this in vitro study is to analyse the physiochemical characterization of three commercially available dental implant surfaces and evaluate the interaction between the implant surface and C-PRF
Materials and Methods: Three commercially available implants with different macro-morphology and surface treatments - Straumann® BLX Roxolid®, Zimmer® Trabecular MetalTM, and Laser-Lok® were analysed for physiochemical characterization and biofunctionalization using C-PRF Field emission scanning electron microscope (FESEM)
Results: All the surfaces appeared visibly rough to varying degrees under FESEM with EDS. The topographies were qualitatively different for all three implant systems- Straumann® BLX Roxolid®, Zimmer® Trabecular MetalTM, and Laser-Lok® that were analysed, and showed different elemental compositions. Every dental implant immersed in C-PRF had a fibrin mesh covering it. Nonetheless, distinct noncontact regions were noted, and the fibrin orientation varied across all implant surfaces.
Conclusions: There are notable differences in the initial interaction between the fibrin network and various implant surfaces. The therapeutic significance of these findings in the osseointegration process of dental implants requires further investigation.
Ethical Statement
Ethical clearance was obtained from Institutional Ethics Committee, Sri Ramachandra Institute of Higher Education and Research, Chennai Ref: CSP/21/NOV/102/588.
Supporting Institution
Sri Ramachandra Institute of Higher Education and Research, Chennai
References
- 1. Moraschini V, Poubel LA da C, Ferreira VF, Barboza E dos SP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015;44(3):377–388.
- 2. Moraes MB, de Toledo VGL, Nascimento RD, Gonçalves F de CP, Raldi FV. Evaluation of implant osseointegration success: Retrospective study at update course. Brazilian Dent Sci. 2015;18(4):98–103.
- 3. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–949.
- 4. Brånemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials. 1997;18(14):969–978.
- 5. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res. 2006;17(3):251–257.
- 6. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.
- 7. Ting M, Jefferies SR, Xia W, Engqvist H, Suzuki JB. Classification and Effects of Implant Surface Modification on the Bone: Human Cell-Based In Vitro Studies. J Oral Implantol. 2017;43(1):58–83.
- 8. Andrade CX, Quirynen M, Rosenberg DR, Pinto NR. Interaction between Different Implant Surfaces and Liquid Fibrinogen: A Pilot In Vitro Experiment. Biomed Res Int. 2021;2021:9996071.
- 9. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.
- 10. Weiner S, Simon J, Ehrenberg DS, Zweig B, Ricci JL. The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent. 2008;17(2):217–228.
- 11. Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL. Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant Dent. 2009;18(1):57–66.
- 12. Lee JW, Wen HB, Gubbi P, Romanos GE. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study. Clin Oral Implants Res. 2018;29(2):164–174.
- 13. Rao GN, Pampana S, Yarram A, Sajjan MCS, Ramaraju A V. D. Bhee-malingeswara rao,“Surface modifications of dental implants: an overview,.” Int J Dent Mater. 2019;1(1):17–24.
- 14. Saini K, Chopra P, Sheokand V. Journey of platelet concentrates: a review. Biomed Pharmacol J. 2020;13(1):185–191.
- 15. Borie E, Oliví DG, Orsi IA, Garlet K, Weber B, Beltrán V, et al. Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med. 2015;8(5):7922.
- 16. Miron RJ, Chai J, Zhang P, Li Y, Wang Y, Mourão CF de AB, et al. A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields. Clin Oral Investig. 2020;24:2819–2828.
- 17. Fujioka-Kobayashi M, Katagiri H, Kono M, Schaller B, Zhang Y, Sculean A, et al. Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols. Clin Oral Investig. 2020;24:4373–4383.
- 18. Wu YP, Bloemendal HJ, Voest EE, Logtenberg T, de Groot PG, Gebbink MFBG, et al. Fibrin-incorporated vitronectin is involved in platelet adhesion and thrombus formation through homotypic interactions with platelet-associated vitronectin. Blood. 2004;104(4):1034–1041.
- 19. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(20):3861–3863.
- 20. Castro AB, Cortellini S, Temmerman A, Li X, Pinto N, Teughels W, et al. Characterization of the Leukocyte- and Platelet-Rich Fibrin Block: Release of Growth Factors, Cellular Content, and Structure. Int J Oral Maxillofac Implants. 2019;34(4):855–864.
- 21. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2006;101(3):e45–50.
- 22. Ehrenfest DMD, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010;28(4):198–206.
- 23. Paradella TC, Bottino MA. Scanning Electron Microscopy in modern dentistry research. Brazilian Dent Sci. 2012;15(2):43–48.
- 24. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 2014;10(7):2894–2906.
- 25. Prasanthi I, Raidongia K, Datta KKR. Super-wetting properties of functionalized fluorinated graphene and its application in oil–water and emulsion separation. Mater Chem Front. 2021;5(16):6244–6255.
- 26. Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants. 2006;21(6):859-866
- 27. Mohajerani H, Roozbayani R, Taherian S, Tabrizi R. The risk factors in early failure of dental implants: a retrospective study. J Dent. 2017;18(4):298.
- 28. Lollobrigida M, Maritato M, Bozzuto G, Formisano G, Molinari A, De Biase A. Biomimetic Implant Surface Functionalization with Liquid L-PRF Products: In Vitro Study. Biomed Res Int. 2018;2018:9031435.
- 29. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. In: Seminars in immunology. Elsevier; 2008. p. 86–100.
- 30. Lang NP, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–356.
- 31. Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. Ann Transl Med. 2021;9(15):1259.
Year 2025,
Volume: 28 Issue: 2, 174 - 186, 30.06.2025
Aparna Ayyalasomayajula
,
Muthukumar Santhanakrishnan
,
Sri Vidhya Marimuthu
,
Ravindranath Dhulipalla
,
Ramanarayana Boyapati
References
- 1. Moraschini V, Poubel LA da C, Ferreira VF, Barboza E dos SP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015;44(3):377–388.
- 2. Moraes MB, de Toledo VGL, Nascimento RD, Gonçalves F de CP, Raldi FV. Evaluation of implant osseointegration success: Retrospective study at update course. Brazilian Dent Sci. 2015;18(4):98–103.
- 3. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–949.
- 4. Brånemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials. 1997;18(14):969–978.
- 5. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res. 2006;17(3):251–257.
- 6. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.
- 7. Ting M, Jefferies SR, Xia W, Engqvist H, Suzuki JB. Classification and Effects of Implant Surface Modification on the Bone: Human Cell-Based In Vitro Studies. J Oral Implantol. 2017;43(1):58–83.
- 8. Andrade CX, Quirynen M, Rosenberg DR, Pinto NR. Interaction between Different Implant Surfaces and Liquid Fibrinogen: A Pilot In Vitro Experiment. Biomed Res Int. 2021;2021:9996071.
- 9. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.
- 10. Weiner S, Simon J, Ehrenberg DS, Zweig B, Ricci JL. The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent. 2008;17(2):217–228.
- 11. Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL. Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant Dent. 2009;18(1):57–66.
- 12. Lee JW, Wen HB, Gubbi P, Romanos GE. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study. Clin Oral Implants Res. 2018;29(2):164–174.
- 13. Rao GN, Pampana S, Yarram A, Sajjan MCS, Ramaraju A V. D. Bhee-malingeswara rao,“Surface modifications of dental implants: an overview,.” Int J Dent Mater. 2019;1(1):17–24.
- 14. Saini K, Chopra P, Sheokand V. Journey of platelet concentrates: a review. Biomed Pharmacol J. 2020;13(1):185–191.
- 15. Borie E, Oliví DG, Orsi IA, Garlet K, Weber B, Beltrán V, et al. Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med. 2015;8(5):7922.
- 16. Miron RJ, Chai J, Zhang P, Li Y, Wang Y, Mourão CF de AB, et al. A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields. Clin Oral Investig. 2020;24:2819–2828.
- 17. Fujioka-Kobayashi M, Katagiri H, Kono M, Schaller B, Zhang Y, Sculean A, et al. Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols. Clin Oral Investig. 2020;24:4373–4383.
- 18. Wu YP, Bloemendal HJ, Voest EE, Logtenberg T, de Groot PG, Gebbink MFBG, et al. Fibrin-incorporated vitronectin is involved in platelet adhesion and thrombus formation through homotypic interactions with platelet-associated vitronectin. Blood. 2004;104(4):1034–1041.
- 19. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(20):3861–3863.
- 20. Castro AB, Cortellini S, Temmerman A, Li X, Pinto N, Teughels W, et al. Characterization of the Leukocyte- and Platelet-Rich Fibrin Block: Release of Growth Factors, Cellular Content, and Structure. Int J Oral Maxillofac Implants. 2019;34(4):855–864.
- 21. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2006;101(3):e45–50.
- 22. Ehrenfest DMD, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010;28(4):198–206.
- 23. Paradella TC, Bottino MA. Scanning Electron Microscopy in modern dentistry research. Brazilian Dent Sci. 2012;15(2):43–48.
- 24. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 2014;10(7):2894–2906.
- 25. Prasanthi I, Raidongia K, Datta KKR. Super-wetting properties of functionalized fluorinated graphene and its application in oil–water and emulsion separation. Mater Chem Front. 2021;5(16):6244–6255.
- 26. Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants. 2006;21(6):859-866
- 27. Mohajerani H, Roozbayani R, Taherian S, Tabrizi R. The risk factors in early failure of dental implants: a retrospective study. J Dent. 2017;18(4):298.
- 28. Lollobrigida M, Maritato M, Bozzuto G, Formisano G, Molinari A, De Biase A. Biomimetic Implant Surface Functionalization with Liquid L-PRF Products: In Vitro Study. Biomed Res Int. 2018;2018:9031435.
- 29. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. In: Seminars in immunology. Elsevier; 2008. p. 86–100.
- 30. Lang NP, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–356.
- 31. Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. Ann Transl Med. 2021;9(15):1259.