Research Article
BibTex RIS Cite

Biomimetic Implant Surface Functionalization with Concentrated Platelet-Rich Fibrin

Year 2025, Volume: 28 Issue: 2, 174 - 186, 30.06.2025
https://doi.org/10.7126/cumudj.1614883

Abstract

Objective: With high long-term survival and success rates, implant-supported oral rehabilitation has progressively expanded the treatment options available to edentulous patients. However, osseointegration may be impacted by certain medical conditions. In order to enhance osseointegration and encourage fibrin adherence, surfaces with particular micro- and nanotopographies and biomimetic properties have been developed. Recently, there has been interest in a potential strategy that involves using the patient's autologous blood to functionalise the implant surface just prior to placement. The objective of this in vitro study is to analyse the physiochemical characterization of three commercially available dental implant surfaces and evaluate the interaction between the implant surface and C-PRF
Materials and Methods: Three commercially available implants with different macro-morphology and surface treatments - Straumann® BLX Roxolid®, Zimmer® Trabecular MetalTM, and Laser-Lok® were analysed for physiochemical characterization and biofunctionalization using C-PRF Field emission scanning electron microscope (FESEM)
Results: All the surfaces appeared visibly rough to varying degrees under FESEM with EDS. The topographies were qualitatively different for all three implant systems- Straumann® BLX Roxolid®, Zimmer® Trabecular MetalTM, and Laser-Lok® that were analysed, and showed different elemental compositions. Every dental implant immersed in C-PRF had a fibrin mesh covering it. Nonetheless, distinct noncontact regions were noted, and the fibrin orientation varied across all implant surfaces.
Conclusions: There are notable differences in the initial interaction between the fibrin network and various implant surfaces. The therapeutic significance of these findings in the osseointegration process of dental implants requires further investigation.

Ethical Statement

Ethical clearance was obtained from Institutional Ethics Committee, Sri Ramachandra Institute of Higher Education and Research, Chennai Ref: CSP/21/NOV/102/588.

Supporting Institution

Sri Ramachandra Institute of Higher Education and Research, Chennai

References

  • 1. Moraschini V, Poubel LA da C, Ferreira VF, Barboza E dos SP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015;44(3):377–388.
  • 2. Moraes MB, de Toledo VGL, Nascimento RD, Gonçalves F de CP, Raldi FV. Evaluation of implant osseointegration success: Retrospective study at update course. Brazilian Dent Sci. 2015;18(4):98–103.
  • 3. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–949.
  • 4. Brånemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials. 1997;18(14):969–978.
  • 5. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res. 2006;17(3):251–257.
  • 6. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.
  • 7. Ting M, Jefferies SR, Xia W, Engqvist H, Suzuki JB. Classification and Effects of Implant Surface Modification on the Bone: Human Cell-Based In Vitro Studies. J Oral Implantol. 2017;43(1):58–83.
  • 8. Andrade CX, Quirynen M, Rosenberg DR, Pinto NR. Interaction between Different Implant Surfaces and Liquid Fibrinogen: A Pilot In Vitro Experiment. Biomed Res Int. 2021;2021:9996071.
  • 9. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.
  • 10. Weiner S, Simon J, Ehrenberg DS, Zweig B, Ricci JL. The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent. 2008;17(2):217–228.
  • 11. Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL. Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant Dent. 2009;18(1):57–66.
  • 12. Lee JW, Wen HB, Gubbi P, Romanos GE. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study. Clin Oral Implants Res. 2018;29(2):164–174.
  • 13. Rao GN, Pampana S, Yarram A, Sajjan MCS, Ramaraju A V. D. Bhee-malingeswara rao,“Surface modifications of dental implants: an overview,.” Int J Dent Mater. 2019;1(1):17–24.
  • 14. Saini K, Chopra P, Sheokand V. Journey of platelet concentrates: a review. Biomed Pharmacol J. 2020;13(1):185–191.
  • 15. Borie E, Oliví DG, Orsi IA, Garlet K, Weber B, Beltrán V, et al. Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med. 2015;8(5):7922.
  • 16. Miron RJ, Chai J, Zhang P, Li Y, Wang Y, Mourão CF de AB, et al. A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields. Clin Oral Investig. 2020;24:2819–2828.
  • 17. Fujioka-Kobayashi M, Katagiri H, Kono M, Schaller B, Zhang Y, Sculean A, et al. Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols. Clin Oral Investig. 2020;24:4373–4383.
  • 18. Wu YP, Bloemendal HJ, Voest EE, Logtenberg T, de Groot PG, Gebbink MFBG, et al. Fibrin-incorporated vitronectin is involved in platelet adhesion and thrombus formation through homotypic interactions with platelet-associated vitronectin. Blood. 2004;104(4):1034–1041.
  • 19. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(20):3861–3863.
  • 20. Castro AB, Cortellini S, Temmerman A, Li X, Pinto N, Teughels W, et al. Characterization of the Leukocyte- and Platelet-Rich Fibrin Block: Release of Growth Factors, Cellular Content, and Structure. Int J Oral Maxillofac Implants. 2019;34(4):855–864.
  • 21. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2006;101(3):e45–50.
  • 22. Ehrenfest DMD, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010;28(4):198–206.
  • 23. Paradella TC, Bottino MA. Scanning Electron Microscopy in modern dentistry research. Brazilian Dent Sci. 2012;15(2):43–48.
  • 24. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 2014;10(7):2894–2906.
  • 25. Prasanthi I, Raidongia K, Datta KKR. Super-wetting properties of functionalized fluorinated graphene and its application in oil–water and emulsion separation. Mater Chem Front. 2021;5(16):6244–6255.
  • 26. Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants. 2006;21(6):859-866
  • 27. Mohajerani H, Roozbayani R, Taherian S, Tabrizi R. The risk factors in early failure of dental implants: a retrospective study. J Dent. 2017;18(4):298.
  • 28. Lollobrigida M, Maritato M, Bozzuto G, Formisano G, Molinari A, De Biase A. Biomimetic Implant Surface Functionalization with Liquid L-PRF Products: In Vitro Study. Biomed Res Int. 2018;2018:9031435.
  • 29. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. In: Seminars in immunology. Elsevier; 2008. p. 86–100.
  • 30. Lang NP, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–356.
  • 31. Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. Ann Transl Med. 2021;9(15):1259.
Year 2025, Volume: 28 Issue: 2, 174 - 186, 30.06.2025
https://doi.org/10.7126/cumudj.1614883

Abstract

References

  • 1. Moraschini V, Poubel LA da C, Ferreira VF, Barboza E dos SP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015;44(3):377–388.
  • 2. Moraes MB, de Toledo VGL, Nascimento RD, Gonçalves F de CP, Raldi FV. Evaluation of implant osseointegration success: Retrospective study at update course. Brazilian Dent Sci. 2015;18(4):98–103.
  • 3. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–949.
  • 4. Brånemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials. 1997;18(14):969–978.
  • 5. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res. 2006;17(3):251–257.
  • 6. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.
  • 7. Ting M, Jefferies SR, Xia W, Engqvist H, Suzuki JB. Classification and Effects of Implant Surface Modification on the Bone: Human Cell-Based In Vitro Studies. J Oral Implantol. 2017;43(1):58–83.
  • 8. Andrade CX, Quirynen M, Rosenberg DR, Pinto NR. Interaction between Different Implant Surfaces and Liquid Fibrinogen: A Pilot In Vitro Experiment. Biomed Res Int. 2021;2021:9996071.
  • 9. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.
  • 10. Weiner S, Simon J, Ehrenberg DS, Zweig B, Ricci JL. The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent. 2008;17(2):217–228.
  • 11. Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL. Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant Dent. 2009;18(1):57–66.
  • 12. Lee JW, Wen HB, Gubbi P, Romanos GE. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study. Clin Oral Implants Res. 2018;29(2):164–174.
  • 13. Rao GN, Pampana S, Yarram A, Sajjan MCS, Ramaraju A V. D. Bhee-malingeswara rao,“Surface modifications of dental implants: an overview,.” Int J Dent Mater. 2019;1(1):17–24.
  • 14. Saini K, Chopra P, Sheokand V. Journey of platelet concentrates: a review. Biomed Pharmacol J. 2020;13(1):185–191.
  • 15. Borie E, Oliví DG, Orsi IA, Garlet K, Weber B, Beltrán V, et al. Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med. 2015;8(5):7922.
  • 16. Miron RJ, Chai J, Zhang P, Li Y, Wang Y, Mourão CF de AB, et al. A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields. Clin Oral Investig. 2020;24:2819–2828.
  • 17. Fujioka-Kobayashi M, Katagiri H, Kono M, Schaller B, Zhang Y, Sculean A, et al. Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols. Clin Oral Investig. 2020;24:4373–4383.
  • 18. Wu YP, Bloemendal HJ, Voest EE, Logtenberg T, de Groot PG, Gebbink MFBG, et al. Fibrin-incorporated vitronectin is involved in platelet adhesion and thrombus formation through homotypic interactions with platelet-associated vitronectin. Blood. 2004;104(4):1034–1041.
  • 19. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(20):3861–3863.
  • 20. Castro AB, Cortellini S, Temmerman A, Li X, Pinto N, Teughels W, et al. Characterization of the Leukocyte- and Platelet-Rich Fibrin Block: Release of Growth Factors, Cellular Content, and Structure. Int J Oral Maxillofac Implants. 2019;34(4):855–864.
  • 21. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2006;101(3):e45–50.
  • 22. Ehrenfest DMD, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010;28(4):198–206.
  • 23. Paradella TC, Bottino MA. Scanning Electron Microscopy in modern dentistry research. Brazilian Dent Sci. 2012;15(2):43–48.
  • 24. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 2014;10(7):2894–2906.
  • 25. Prasanthi I, Raidongia K, Datta KKR. Super-wetting properties of functionalized fluorinated graphene and its application in oil–water and emulsion separation. Mater Chem Front. 2021;5(16):6244–6255.
  • 26. Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants. 2006;21(6):859-866
  • 27. Mohajerani H, Roozbayani R, Taherian S, Tabrizi R. The risk factors in early failure of dental implants: a retrospective study. J Dent. 2017;18(4):298.
  • 28. Lollobrigida M, Maritato M, Bozzuto G, Formisano G, Molinari A, De Biase A. Biomimetic Implant Surface Functionalization with Liquid L-PRF Products: In Vitro Study. Biomed Res Int. 2018;2018:9031435.
  • 29. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. In: Seminars in immunology. Elsevier; 2008. p. 86–100.
  • 30. Lang NP, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–356.
  • 31. Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. Ann Transl Med. 2021;9(15):1259.
There are 31 citations in total.

Details

Primary Language English
Subjects Periodontics
Journal Section Original Research Articles
Authors

Aparna Ayyalasomayajula 0000-0002-3483-114X

Muthukumar Santhanakrishnan 0000-0001-9688-1516

Sri Vidhya Marimuthu 0009-0001-5071-8358

Ravindranath Dhulipalla 0000-0003-4103-455X

Ramanarayana Boyapati 0000-0002-9196-0183

Publication Date June 30, 2025
Submission Date January 7, 2025
Acceptance Date April 9, 2025
Published in Issue Year 2025Volume: 28 Issue: 2

Cite

EndNote Ayyalasomayajula A, Santhanakrishnan M, Marimuthu SV, Dhulipalla R, Boyapati R (June 1, 2025) Biomimetic Implant Surface Functionalization with Concentrated Platelet-Rich Fibrin. Cumhuriyet Dental Journal 28 2 174–186.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.