Derleme
BibTex RIS Kaynak Göster

Use of Micro Computed Tomography in Prosthetic Dentistry

Yıl 2023, Cilt: 26 Sayı: 1, 77 - 86, 26.03.2023
https://doi.org/10.7126/cumudj.1241456

Öz

Today, the use of micro-computed tomography is becoming widespread in almost every field of dental research. When the national review articles on micro-computed tomography are examined, it is seen that the focus is on endodontic and surgical dental applications. As prosthodontists, our article, which was compiled in order to deepen the specific usage areas of micro-computed tomography applications and to review the studies done in this area, provides information about the use of micro-computed tomography method in prosthetic dentistry. Micro-computed tomography is a powerful in vitro research method. Micro-computed tomography was used; marginal and internal compatibility of restorations, cement spacing of restorations, adaptation of denture bases, accuracy of prosthetic measurements, effects of occlusal irregularities, volumetric changes in teeth due to dental post application, biomechanical evaluation of implant-abutment connection, and compatibility of maxillofacial prostheses.

Kaynakça

  • 1. Dunn PM. Wilhelm Conrad Röentgen (1845–1923), the discovery ofx rays and perinatal diagnosis. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F138-139.
  • 2. Elliott JC, Dover S. X‐ray microtomography. J Microsc. 1982;126(Pt 2):211-213.
  • 3. Güner O, Altıntaş G, Ergüt A. Mikro-CT Çözünürlüğünün Voksel Tabanlı Model ve Analiz Sonuçları Üzerindeki Etkileri-Effect of Micro-CT Resolutions of Voxel Based Model and Analysis Results. Celal Bayar University Journal of Science.2015;11(2):0-.
  • 4. Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M. The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3-11.
  • 5. Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8(6):833-842.
  • 6. Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol. 1973;46(552):1016-1022.
  • 7. Swain MV, Xue J. State of the art of Micro‐CT applications in dental research. Int J Oral Sci. 2009;1(4):177-188.
  • 8. Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, et al. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag. 2003;22(5):77-83.
  • 9. Guldberg RE, Lin AS, Coleman R, Robertson G, Duvall C. Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res C Embryo Today. 2004;72(3):250-259.
  • 10. Bauer JRdO, Grande RHM, Rodrigues-Filho LE, Pinto MM, Loguercio AD. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys. Braz Oral Res. 2012;26(3):190-196.
  • 11. Layton D. A critical appraisal of the survival and complication rates of tooth-supported all-ceramic and metal-ceramic fixed dental prostheses: the application of evidence-based dentistry. Int J Prosthodont. 2011;24(5):417-427.
  • 12. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent. 1991;65(3):357-364.
  • 13. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br dent j. 1971;131(3):107-111.
  • 14. Pimenta MA, Frasca LC, Lopes R, Rivaldo E. Evaluation of marginal and internal fit of ceramic and metallic crown copings using x-ray microtomography (micro-CT) technology. The J Prosthet Dent. 2015;114(2):223-238.
  • 15. Pelekanos S, Koumanou M, Koutayas S, Zinelis S, Eliades G. Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent. 2009;4(3):278-292.
  • 16. Borba M, Miranda WG, Cesar PF, Griggs JA, Bona AD. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology. Braz Oral Res. 2013;27(5):396-402.
  • 17. Demir N, Ozturk AN, Malkoc MA. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur Journal Dent. 2014;8(04):437-444.
  • 18. Kim J-H, Jeong J-H, Lee J-H, Cho H-W. Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT. J Prosthet Dent. 2016;116(4):551-557.
  • 19. Kim E-H, Lee D-H, Kwon S-M, Kwon T-Y. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent. 2017;117(3):393-399.
  • 20. Alajaji NK, Bardwell D, Finkelman M, Ali A. Micro‐CT Evaluation of Ceramic Inlays: Comparison of the Marginal and Internal Fit of Five and Three Axis CAM Systems with a Heat Press Technique. J Esthet Res Dent. 2017;29(1):49-58.
  • 21. Moris ICM, Monteiro SB, Martins R, Ribeiro RF, Gomes EA. Influence of manufacturing methods of implant-supported crowns on external and internal marginal fit: a micro-CT analysis. BioMed Res İnt. 2018;2018:5049605.
  • 22. Duqum IS, Brenes C, Mendonca G, Carneiro TAPN, Cooper LF. Marginal Fit Evaluation of CAD/CAM All Ceramic Crowns Obtained by Two Digital Workflows: An In Vitro Study Using Micro‐CT Technology. JvProsthodont. 2019;28(9):1037-1043.
  • 23. Bayrak A, Akat B, Ocak M, Kılıçarslan MA, Özcan M. Micro-Computed Tomography Analysis of Fit of Ceramic Inlays Produced with Different CAD Software Programs. Eur J Prosthodont Restor Dent. 2021;29(3).
  • 24. Ekici Z, Kılıçarslan MA, Bilecenoğlu B, Ocak M. Micro-CT Evaluation of the Marginal and Internal Fit of Crown and Inlay Restorations Fabricated Via Different Digital Scanners belonging to the Same CAD-CAM System. Int J Prosthodont. 2021;34(3):381-399.
  • 25. Baldi A, Comba A, Ferrero G, Italia E, Tempesta RM, Paolone G, et al. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J Esthet Rest Dent. 2022;34(3):557-64.
  • 26. Tamam E, Güngör MB, Nemli SK, Bilecenoğlu B, Ocak M. Effect of different preparation finishing procedures on the marginal and internal fit of CAD-CAM-produced restorations: A microcomputed tomography evaluation. J Prosthet Dent. 2021;S0022-3913(21)00631-4.
  • 27. Frankenberger R, Sindel J, Kramer N, Petschelt A. Dentin bond strength and marginal adaptation: direct composite resins vs ceramic inlays. Oper Dent. 1999;24(3):147-155.
  • 28. Alfaro DP, Ruse ND, Carvalho RM, Wyatt CC. Assessment of the internal fit of lithium disilicate crowns using micro‐CT. J Prosthodont. 2015;24(5):381-386.
  • 29. Uzgur R, Ercan E, Uzgur Z, Çolak H, Yalçın M, Özcan M. Cement Thickness of Inlay Restorations Made of Lithium Disilicate, Polymer‐Infiltrated Ceramic and Nano‐Ceramic CAD/CAM Materials Evaluated Using 3D X‐Ray Micro‐Computed Tomography. J Prosthodont. 2018;27(5):456-460.
  • 30. Liu B, Lu C, Wu Y, Zhang X, Arola D, Zhang D. The Effects of Adhesive Type and Thickness on Stress Distribution in Molars Restored with All‐Ceramic Crowns. J Prosthodont. 2011;20(1):35-44.
  • 31. Al-Saleh S, Aboghosh TW, Hazazi MS, Binsaeed KA, Almuhaisen AM, Tulbah HI, et al. Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study. Polymers(Basel). 2021;13(23):4227.
  • 32. Darvell BW, Clark RK. The physical mechanisms of complete denture retention. Br Dent J. 2000;189(5):248-52.
  • 33. Lee C-J, Bok S-B, Bae J-Y, Lee H-H. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods. Dent Mater J. 2010;29(4):411-417.
  • 34. Hwang H-J, Lee SJ, Park E-J, Yoon H-I. Assessment of the trueness and tissue surface adaptation of CAD-CAM maxillary denture bases manufactured using digital light processing. J Prosthet Dent. 2019;121(1):110-117.
  • 35. Yoon H-I, Hwang H-J, Ohkubo C, Han J-S, Park E-J. Evaluation of the trueness and tissue surface adaptation of CAD-CAM mandibular denture bases manufactured using digital light processing. J Prosthet Dent. 2018;120(6):919-926.
  • 36. Tayman MA, Kamburoğlu K, Küçük Ö, Ateş FS, Günhan M. Comparison of linear and volumetric measurements obtained from periodontal defects by using cone beam-CT and micro-CT: an in vitro study. Clin Oral İnvestig. 2019;23(5):2235-2244.
  • 37. Oğuz Eİ, Kılıçarslan MA, Özcan M, Ocak M, Bilecenoğlu B, Orhan K. Evaluation of Denture Base Adaptation Fabricated Using Conventional, Subtractive, and Additive Technologies: A Volumetric Micro‐Computed Tomography Analysis. J Prosthodont 2021;30(3):257-263.
  • 38. Donovan TE, Chee WWL. A review of contemporary impression materials and techniques. Dent Clin North Am. 2004;48(2):vi-vii,445-470.
  • 39. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14:10.
  • 40. Rhee Y-K, Huh Y-H, Cho L-R, Park C-J. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition. J Adv Prosthodont. 2015;7(6):460-467.
  • 41. Li Y-X, Bai Y-X, Wei C-F. Three-dimensional digital dental model based on micro-CT. Zhonghua Kou Qiang Yi Xue Za Zhi. 2011;46(1):47-49.
  • 42. Kim C, Baek SH, Lee T, Go J, Kim SY, Cho S. Efficient digitalization method for dental restorations using micro-CT data. Sci Rep. 2017;7:44577.
  • 43. Hamm J, Berndt E-U, Beuer F, Zachriat C. Evaluation of model materials for CAD/CAM in vitro studies. Int J Comput Dent. 2020;23(1):49-56.
  • 44. Walker CG, Ito Y, Dangaria S, Luan X, Diekwisch TGH. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model. Eur J Oral Sci. 2008;116(4):312-318.
  • 45. Lee J-H, Kim H-J, Yun J-H. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study. J Periodontal İmplant Sci. 2017;47(1):20-29.
  • 46. Kim T, Lee W, Baek S-H, Pyo S, Kook Y-A, Bayome M, et al. Effects of alveolar bone displacement with segmental osteotomy: micro-CT and histomorphometric analysis in rats. Braz Oral Res. 2016;30(1):e132.
  • 47. Tsutsumi T, Kajiya H, Tsuzuki T, Goto KT, Okabe K, Takahashi Y. Micro-computed tomography for evaluating alveolar bone resorption induced by hyperocclusion. J Prosthodont Res. 2018;62(3):298-302.
  • 48. Zhang Y, Xu X, Zhou P, Liu Q, Zhang M, Yang H et al. Elder Mice Exhibit More Severe Degeneration and Milder Regeneration in Temporomandibular Joints Subjected to Bilateral Anterior Crossbite. Front Physiol. 2021;12:750468.
  • 49. Peters OA, Peters CI, Schonenberger K, Barbakow F. ProTaper rotary root canal preparation: effects of canal anatomy on final shape analysed by micro CT. Int Endod J. 2003;36(2):86-92.
  • 50. Ikram O, Patel S, Sauro S, Mannocci F. Micro‐computed tomography of tooth tissue volume changes following endodontic procedures and post space preparation. Int Endod J. 2009;42(12):1071-1076.
  • 51. Kim JJ, Alapati S, Knoernschild KL, Jeong YH, Kim DG, Lee DJ. Micro‐Computed Tomography of Tooth Volume Changes Following Post Removal. J Prosthodont. 2017;26(6):522-528.
  • 52. Chang Y-H, Wang H-W, Lin P-H, Lin C-L. Evaluation of early resin luting cement damage induced by voids around a circular fiber post in a root canal treated premolar by integrating micro-CT, finite element analysis and fatigue testing. Dent Mater. 2018;34(7):1082-1088.
  • 53. Soares AP, Bitter K, Lagrange A, Rack A, Shemesh H, Zaslansky P. Gaps at the interface between dentine and self‐adhesive resin cement in post‐endodontic restorations quantified in 3D by phase contrast‐enhanced micro‐CT. Int Endod J. 2020;53(3):392-402.
  • 54. Çehreli MC, Akça K, İplikçioğlu H, Şahin S. Dynamic fatigue resistance of implant–abutment junction in an internally notched morse‐taper oral implant: influence of abutment design. Clin Oral Implants Res. 2004;15(4):459-465.
  • 55. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent. 2002;88(6):604-610.
  • 56. Schmitt CM, Nogueira‐Filho G, Tenenbaum HC, Lai JY, Brito C, Döring H, et al. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A. 2014;102(2):552-574.
  • 57. Cha H-S, Kim Y-S, Jeon J-H, Lee J-H. Cumulative survival rate and complication rates of single‐tooth implant; focused on the coronal fracture of fixture in the internal connection implant. J Oral Rehabil. 2013;40(8):595-602.
  • 58. Mombelli A, Müller N, Cionca N. The epidemiology of peri‐implantitis. Clin Oral İmplants Res. 2012;23 Suppl 6:67-76.
  • 59. Wilson Jr TG, Valderrama P, Burbano M, Blansett J, Levine R, Kessler H, et al. Foreign bodies associated with peri‐implantitis human biopsies. J Periodontol. 2015;86(1):9-15.
  • 60. Karl M, Taylor TD. Parameters determining micromotion at the implant-abutment interface. Int J Oral Maxillofac Implants. 2014;29(6):1338-1347.
  • 61. Stimmelmayr M, Edelhoff D, Güth J-F, Erdelt K, Happe A, Beuer F. Wear at the titanium–titanium and the titanium–zirconia implant–abutment interface: A comparative in vitro study. Dent Mater. 2012;28(12):1215-1220.
  • 62. Blum K, Wiest W, Fella C, Balles A, Dittmann J, Rack A, et al. Fatigue induced changes in conical implant–abutment connections. Dent Mater. 2015;31(11):1415-1426.
  • 63. Rezende CEE, Griggs JA, Duan Y, Mushashe AM, Nolasco GMC, et al. An indirect method to measure abutment screw preload: A pilot study based on micro-CT scanning. Braz Dent J. 2015;26(6):596-601.
  • 64. Kapishnikov S, Gadyukov A, Chaushu G, Chaushu L. Micro-CT Analysis of Microgap at a Novel Two-Piece Dental Implant Comprising a Replaceable Sleeve In Vitro. Intl J Oral Maxillofac Implants. 2021;36(3):451-459.
  • 65. Bagegni A, Zabler S, Nelson K, Rack A, Spies BC, Vach K, et al. Synchrotron-based micro computed tomography investigation of the implant-abutment fatigue-induced microgap changes. J Mech Behav Biomed Mater. 2021;116:104330.
  • 66. Bergamo ETP, Campos TMB, Lopes ACO, Cardoso KB, Gouvea MVR, de Araújo-Júnior ENS, et al. Hydrothermal aging affects the three-dimensional fit and fatigue lifetime of zirconia abutments. J Mech Behav Biomed Mater. 2021;124:104832.
  • 67. Verdonschot N, Fennis WM, Kuijs RH, Stolk J, Kreulen CM, Creugers NH. Generation of 3-D finite element models of restored human teeth using micro-CT techniques. Int J Prosthodont. 2001;14(4):310-315.
  • 68. Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater. 2007;23(5):539-548.
  • 69. Della Bona A, Borba M, Benetti P, Duan Y, Griggs JA. Three-dimensional finite element modelling of all-ceramic restorations based on micro-CT. J Dent. 2013;41(5):412-419.
  • 70. Marcián P, Wolff J, Horáčková L, Kaiser J, Zikmund T, Borák L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med. 2018;96:157-165.
  • 71. Ausiello P, Tribst JPM, Ventre M, Salvati E, di Lauro AE, Martorelli M, et al. The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis. Dent Mater. 2021;37(11):1688-1697.
  • 72. Kaigler D, Mooney D. Tissue engineering's impact on dentistry. J Dent Educ. 2001;65(5):456-462.
  • 73. Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005;8(3):162-173.
  • 74. Hatamleh MM, Watts DC. Porosity and color of maxillofacial silicone elastomer. J Prosthodont. 2011;20(1):60-66.
  • 75. Artopoulou II, Chambers MS, Eliades G. Porosity of maxillofacial silicone elastomers and microleakage pattern of the commercially pure Ti-silicone elastomer interface after hydrothermal cycling. J Prosthet Dent. 2016;116(6):937-942.

Protetik Diş Hekimliğinde Mikro Bilgisayarlı Tomografi Kullanımı

Yıl 2023, Cilt: 26 Sayı: 1, 77 - 86, 26.03.2023
https://doi.org/10.7126/cumudj.1241456

Öz

Günümüzde dental araştırmaların hemen her alanında mikro bilgisayarlı tomografi (mikro-BT) kullanımı yaygınlaşmaktadır. Mikro-BT konusunda ulusal derleme makaleleri incelendiğinde endodontik ve cerrahi dental uygulamalar üzerinde yoğunlaşıldığı görülmektedir. Prostodontistler olarak mikro-BT uygulamalarının spesifik kullanım alanlarını derinleştirmek ve bu alanda yapılmış çalışmaları gözden geçirmek amacıyla derlenen makalemiz, mikro-BT yönteminin protetik diş hekimliğinde kullanımıyla ilgili bilgi vermektedir. Mikro-BT, güçlü bir in vitro araştırma yöntemidir. Restorasyonların marjinal ve internal uyumu, restorasyonların siman aralığı, protetik kaidelerin adaptasyonu, protetik ölçülerin doğruluğu, oklüzal düzensizliklerin etkileri, dental post uygulamasına bağlı olarak dişlerde meydana gelen volümetrik değişimler, implant-abutment bağlantısının biyomekanik olarak değerlendirilmesi ve çene-yüz protezlerinin uyumu gibi konulardaki protetik araştırmalarda mikro-BT kullanılmıştır.

Kaynakça

  • 1. Dunn PM. Wilhelm Conrad Röentgen (1845–1923), the discovery ofx rays and perinatal diagnosis. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F138-139.
  • 2. Elliott JC, Dover S. X‐ray microtomography. J Microsc. 1982;126(Pt 2):211-213.
  • 3. Güner O, Altıntaş G, Ergüt A. Mikro-CT Çözünürlüğünün Voksel Tabanlı Model ve Analiz Sonuçları Üzerindeki Etkileri-Effect of Micro-CT Resolutions of Voxel Based Model and Analysis Results. Celal Bayar University Journal of Science.2015;11(2):0-.
  • 4. Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M. The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3-11.
  • 5. Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8(6):833-842.
  • 6. Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol. 1973;46(552):1016-1022.
  • 7. Swain MV, Xue J. State of the art of Micro‐CT applications in dental research. Int J Oral Sci. 2009;1(4):177-188.
  • 8. Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, et al. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag. 2003;22(5):77-83.
  • 9. Guldberg RE, Lin AS, Coleman R, Robertson G, Duvall C. Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res C Embryo Today. 2004;72(3):250-259.
  • 10. Bauer JRdO, Grande RHM, Rodrigues-Filho LE, Pinto MM, Loguercio AD. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys. Braz Oral Res. 2012;26(3):190-196.
  • 11. Layton D. A critical appraisal of the survival and complication rates of tooth-supported all-ceramic and metal-ceramic fixed dental prostheses: the application of evidence-based dentistry. Int J Prosthodont. 2011;24(5):417-427.
  • 12. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent. 1991;65(3):357-364.
  • 13. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br dent j. 1971;131(3):107-111.
  • 14. Pimenta MA, Frasca LC, Lopes R, Rivaldo E. Evaluation of marginal and internal fit of ceramic and metallic crown copings using x-ray microtomography (micro-CT) technology. The J Prosthet Dent. 2015;114(2):223-238.
  • 15. Pelekanos S, Koumanou M, Koutayas S, Zinelis S, Eliades G. Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent. 2009;4(3):278-292.
  • 16. Borba M, Miranda WG, Cesar PF, Griggs JA, Bona AD. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology. Braz Oral Res. 2013;27(5):396-402.
  • 17. Demir N, Ozturk AN, Malkoc MA. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur Journal Dent. 2014;8(04):437-444.
  • 18. Kim J-H, Jeong J-H, Lee J-H, Cho H-W. Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT. J Prosthet Dent. 2016;116(4):551-557.
  • 19. Kim E-H, Lee D-H, Kwon S-M, Kwon T-Y. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent. 2017;117(3):393-399.
  • 20. Alajaji NK, Bardwell D, Finkelman M, Ali A. Micro‐CT Evaluation of Ceramic Inlays: Comparison of the Marginal and Internal Fit of Five and Three Axis CAM Systems with a Heat Press Technique. J Esthet Res Dent. 2017;29(1):49-58.
  • 21. Moris ICM, Monteiro SB, Martins R, Ribeiro RF, Gomes EA. Influence of manufacturing methods of implant-supported crowns on external and internal marginal fit: a micro-CT analysis. BioMed Res İnt. 2018;2018:5049605.
  • 22. Duqum IS, Brenes C, Mendonca G, Carneiro TAPN, Cooper LF. Marginal Fit Evaluation of CAD/CAM All Ceramic Crowns Obtained by Two Digital Workflows: An In Vitro Study Using Micro‐CT Technology. JvProsthodont. 2019;28(9):1037-1043.
  • 23. Bayrak A, Akat B, Ocak M, Kılıçarslan MA, Özcan M. Micro-Computed Tomography Analysis of Fit of Ceramic Inlays Produced with Different CAD Software Programs. Eur J Prosthodont Restor Dent. 2021;29(3).
  • 24. Ekici Z, Kılıçarslan MA, Bilecenoğlu B, Ocak M. Micro-CT Evaluation of the Marginal and Internal Fit of Crown and Inlay Restorations Fabricated Via Different Digital Scanners belonging to the Same CAD-CAM System. Int J Prosthodont. 2021;34(3):381-399.
  • 25. Baldi A, Comba A, Ferrero G, Italia E, Tempesta RM, Paolone G, et al. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J Esthet Rest Dent. 2022;34(3):557-64.
  • 26. Tamam E, Güngör MB, Nemli SK, Bilecenoğlu B, Ocak M. Effect of different preparation finishing procedures on the marginal and internal fit of CAD-CAM-produced restorations: A microcomputed tomography evaluation. J Prosthet Dent. 2021;S0022-3913(21)00631-4.
  • 27. Frankenberger R, Sindel J, Kramer N, Petschelt A. Dentin bond strength and marginal adaptation: direct composite resins vs ceramic inlays. Oper Dent. 1999;24(3):147-155.
  • 28. Alfaro DP, Ruse ND, Carvalho RM, Wyatt CC. Assessment of the internal fit of lithium disilicate crowns using micro‐CT. J Prosthodont. 2015;24(5):381-386.
  • 29. Uzgur R, Ercan E, Uzgur Z, Çolak H, Yalçın M, Özcan M. Cement Thickness of Inlay Restorations Made of Lithium Disilicate, Polymer‐Infiltrated Ceramic and Nano‐Ceramic CAD/CAM Materials Evaluated Using 3D X‐Ray Micro‐Computed Tomography. J Prosthodont. 2018;27(5):456-460.
  • 30. Liu B, Lu C, Wu Y, Zhang X, Arola D, Zhang D. The Effects of Adhesive Type and Thickness on Stress Distribution in Molars Restored with All‐Ceramic Crowns. J Prosthodont. 2011;20(1):35-44.
  • 31. Al-Saleh S, Aboghosh TW, Hazazi MS, Binsaeed KA, Almuhaisen AM, Tulbah HI, et al. Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study. Polymers(Basel). 2021;13(23):4227.
  • 32. Darvell BW, Clark RK. The physical mechanisms of complete denture retention. Br Dent J. 2000;189(5):248-52.
  • 33. Lee C-J, Bok S-B, Bae J-Y, Lee H-H. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods. Dent Mater J. 2010;29(4):411-417.
  • 34. Hwang H-J, Lee SJ, Park E-J, Yoon H-I. Assessment of the trueness and tissue surface adaptation of CAD-CAM maxillary denture bases manufactured using digital light processing. J Prosthet Dent. 2019;121(1):110-117.
  • 35. Yoon H-I, Hwang H-J, Ohkubo C, Han J-S, Park E-J. Evaluation of the trueness and tissue surface adaptation of CAD-CAM mandibular denture bases manufactured using digital light processing. J Prosthet Dent. 2018;120(6):919-926.
  • 36. Tayman MA, Kamburoğlu K, Küçük Ö, Ateş FS, Günhan M. Comparison of linear and volumetric measurements obtained from periodontal defects by using cone beam-CT and micro-CT: an in vitro study. Clin Oral İnvestig. 2019;23(5):2235-2244.
  • 37. Oğuz Eİ, Kılıçarslan MA, Özcan M, Ocak M, Bilecenoğlu B, Orhan K. Evaluation of Denture Base Adaptation Fabricated Using Conventional, Subtractive, and Additive Technologies: A Volumetric Micro‐Computed Tomography Analysis. J Prosthodont 2021;30(3):257-263.
  • 38. Donovan TE, Chee WWL. A review of contemporary impression materials and techniques. Dent Clin North Am. 2004;48(2):vi-vii,445-470.
  • 39. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14:10.
  • 40. Rhee Y-K, Huh Y-H, Cho L-R, Park C-J. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition. J Adv Prosthodont. 2015;7(6):460-467.
  • 41. Li Y-X, Bai Y-X, Wei C-F. Three-dimensional digital dental model based on micro-CT. Zhonghua Kou Qiang Yi Xue Za Zhi. 2011;46(1):47-49.
  • 42. Kim C, Baek SH, Lee T, Go J, Kim SY, Cho S. Efficient digitalization method for dental restorations using micro-CT data. Sci Rep. 2017;7:44577.
  • 43. Hamm J, Berndt E-U, Beuer F, Zachriat C. Evaluation of model materials for CAD/CAM in vitro studies. Int J Comput Dent. 2020;23(1):49-56.
  • 44. Walker CG, Ito Y, Dangaria S, Luan X, Diekwisch TGH. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model. Eur J Oral Sci. 2008;116(4):312-318.
  • 45. Lee J-H, Kim H-J, Yun J-H. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study. J Periodontal İmplant Sci. 2017;47(1):20-29.
  • 46. Kim T, Lee W, Baek S-H, Pyo S, Kook Y-A, Bayome M, et al. Effects of alveolar bone displacement with segmental osteotomy: micro-CT and histomorphometric analysis in rats. Braz Oral Res. 2016;30(1):e132.
  • 47. Tsutsumi T, Kajiya H, Tsuzuki T, Goto KT, Okabe K, Takahashi Y. Micro-computed tomography for evaluating alveolar bone resorption induced by hyperocclusion. J Prosthodont Res. 2018;62(3):298-302.
  • 48. Zhang Y, Xu X, Zhou P, Liu Q, Zhang M, Yang H et al. Elder Mice Exhibit More Severe Degeneration and Milder Regeneration in Temporomandibular Joints Subjected to Bilateral Anterior Crossbite. Front Physiol. 2021;12:750468.
  • 49. Peters OA, Peters CI, Schonenberger K, Barbakow F. ProTaper rotary root canal preparation: effects of canal anatomy on final shape analysed by micro CT. Int Endod J. 2003;36(2):86-92.
  • 50. Ikram O, Patel S, Sauro S, Mannocci F. Micro‐computed tomography of tooth tissue volume changes following endodontic procedures and post space preparation. Int Endod J. 2009;42(12):1071-1076.
  • 51. Kim JJ, Alapati S, Knoernschild KL, Jeong YH, Kim DG, Lee DJ. Micro‐Computed Tomography of Tooth Volume Changes Following Post Removal. J Prosthodont. 2017;26(6):522-528.
  • 52. Chang Y-H, Wang H-W, Lin P-H, Lin C-L. Evaluation of early resin luting cement damage induced by voids around a circular fiber post in a root canal treated premolar by integrating micro-CT, finite element analysis and fatigue testing. Dent Mater. 2018;34(7):1082-1088.
  • 53. Soares AP, Bitter K, Lagrange A, Rack A, Shemesh H, Zaslansky P. Gaps at the interface between dentine and self‐adhesive resin cement in post‐endodontic restorations quantified in 3D by phase contrast‐enhanced micro‐CT. Int Endod J. 2020;53(3):392-402.
  • 54. Çehreli MC, Akça K, İplikçioğlu H, Şahin S. Dynamic fatigue resistance of implant–abutment junction in an internally notched morse‐taper oral implant: influence of abutment design. Clin Oral Implants Res. 2004;15(4):459-465.
  • 55. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent. 2002;88(6):604-610.
  • 56. Schmitt CM, Nogueira‐Filho G, Tenenbaum HC, Lai JY, Brito C, Döring H, et al. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A. 2014;102(2):552-574.
  • 57. Cha H-S, Kim Y-S, Jeon J-H, Lee J-H. Cumulative survival rate and complication rates of single‐tooth implant; focused on the coronal fracture of fixture in the internal connection implant. J Oral Rehabil. 2013;40(8):595-602.
  • 58. Mombelli A, Müller N, Cionca N. The epidemiology of peri‐implantitis. Clin Oral İmplants Res. 2012;23 Suppl 6:67-76.
  • 59. Wilson Jr TG, Valderrama P, Burbano M, Blansett J, Levine R, Kessler H, et al. Foreign bodies associated with peri‐implantitis human biopsies. J Periodontol. 2015;86(1):9-15.
  • 60. Karl M, Taylor TD. Parameters determining micromotion at the implant-abutment interface. Int J Oral Maxillofac Implants. 2014;29(6):1338-1347.
  • 61. Stimmelmayr M, Edelhoff D, Güth J-F, Erdelt K, Happe A, Beuer F. Wear at the titanium–titanium and the titanium–zirconia implant–abutment interface: A comparative in vitro study. Dent Mater. 2012;28(12):1215-1220.
  • 62. Blum K, Wiest W, Fella C, Balles A, Dittmann J, Rack A, et al. Fatigue induced changes in conical implant–abutment connections. Dent Mater. 2015;31(11):1415-1426.
  • 63. Rezende CEE, Griggs JA, Duan Y, Mushashe AM, Nolasco GMC, et al. An indirect method to measure abutment screw preload: A pilot study based on micro-CT scanning. Braz Dent J. 2015;26(6):596-601.
  • 64. Kapishnikov S, Gadyukov A, Chaushu G, Chaushu L. Micro-CT Analysis of Microgap at a Novel Two-Piece Dental Implant Comprising a Replaceable Sleeve In Vitro. Intl J Oral Maxillofac Implants. 2021;36(3):451-459.
  • 65. Bagegni A, Zabler S, Nelson K, Rack A, Spies BC, Vach K, et al. Synchrotron-based micro computed tomography investigation of the implant-abutment fatigue-induced microgap changes. J Mech Behav Biomed Mater. 2021;116:104330.
  • 66. Bergamo ETP, Campos TMB, Lopes ACO, Cardoso KB, Gouvea MVR, de Araújo-Júnior ENS, et al. Hydrothermal aging affects the three-dimensional fit and fatigue lifetime of zirconia abutments. J Mech Behav Biomed Mater. 2021;124:104832.
  • 67. Verdonschot N, Fennis WM, Kuijs RH, Stolk J, Kreulen CM, Creugers NH. Generation of 3-D finite element models of restored human teeth using micro-CT techniques. Int J Prosthodont. 2001;14(4):310-315.
  • 68. Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater. 2007;23(5):539-548.
  • 69. Della Bona A, Borba M, Benetti P, Duan Y, Griggs JA. Three-dimensional finite element modelling of all-ceramic restorations based on micro-CT. J Dent. 2013;41(5):412-419.
  • 70. Marcián P, Wolff J, Horáčková L, Kaiser J, Zikmund T, Borák L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med. 2018;96:157-165.
  • 71. Ausiello P, Tribst JPM, Ventre M, Salvati E, di Lauro AE, Martorelli M, et al. The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis. Dent Mater. 2021;37(11):1688-1697.
  • 72. Kaigler D, Mooney D. Tissue engineering's impact on dentistry. J Dent Educ. 2001;65(5):456-462.
  • 73. Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005;8(3):162-173.
  • 74. Hatamleh MM, Watts DC. Porosity and color of maxillofacial silicone elastomer. J Prosthodont. 2011;20(1):60-66.
  • 75. Artopoulou II, Chambers MS, Eliades G. Porosity of maxillofacial silicone elastomers and microleakage pattern of the commercially pure Ti-silicone elastomer interface after hydrothermal cycling. J Prosthet Dent. 2016;116(6):937-942.
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Review
Yazarlar

Kübra Tokay Kızılırmak 0000-0002-4436-0775

Evşen Tamam 0000-0002-3696-6734

Yayımlanma Tarihi 26 Mart 2023
Gönderilme Tarihi 24 Ocak 2023
Yayımlandığı Sayı Yıl 2023Cilt: 26 Sayı: 1

Kaynak Göster

EndNote Tokay Kızılırmak K, Tamam E (01 Mart 2023) Use of Micro Computed Tomography in Prosthetic Dentistry. Cumhuriyet Dental Journal 26 1 77–86.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.