Review
BibTex RIS Cite

Year 2025, Volume: 28 Issue: 3, 447 - 451, 30.09.2025
https://doi.org/10.7126/cumudj.1648247

Abstract

Zirkonya, zirkonyum dioksit (ZrO₂) olarak da bilinen, üstün dayanıklılığı, kimyasal direnci ve biyouyumluluğu nedeniyle diş hekimliğinde sık tercih edilen bir seramik malzemedir. Geleneksel olarak iki katmanlı restorasyonlarda altyapı malzemesi olarak kullanılan zirkonyaya olan talebin artması, üretim tekniklerinde ilerlemelere yol açmıştır. Zirkonya restorasyonlarının üretiminde halen en yaygın yöntem eksiltmeli üretim (frezeleme) olsa da eklemeli üretim (3D baskı), malzeme verimliliğinin artması, kompleks tasarımların üretilebilmesi ve daha az malzeme israfı gibi önemli avantajlarıyla yenilikçi bir teknik olarak ortaya çıkmıştır. Bununla birlikte, çözünürlük sınırlamaları, katmanlar arası bağlanma sorunları ve porozite gibi zorluklar devam etmekte olup, en iyi mekanik ve estetik özellikleri sağlamak için sinterleme ve bağ çözücü (debinding) işlemleri gibi işlem süreçleri gerekmektedir. Son araştırmalarda eklemeli üretilen zirkonya, kenar uyumu ve iç uyum açısından klinik olarak kabul edilebilir olup, mekanik özellikleri frezeleme ile üretilen zirkonyalarla karşılaştırılabilir düzeydedir. Bununla birlikte, katman hizalaması, sinterleme ve marjin tasarımı gibi faktörler, final restorasyonun doğruluğunu ve dayanıklılığını önemli ölçüde etkilemektedir. Eklemeli üretilen zirkonyanın klinik uygulanabilirliği umut verici sonuçlara rağmen standartlaştırılmış tekniklerin belirlenmesi ve terapötik etkinliğinin değerlendirilmesi için daha fazla uzun vadeli çalışmaya ihtiyaç vardır. Bu derleme, zirkonya restorasyonları için eklemeli üretimdeki en son gelişmeleri, avantajları ve dezavantajları inceleyerek dijital diş hekimliğinin ilerlemesine katkı sağlamayı amaçlamaktadır.

References

  • 1. Toksoy D, Önöral Ö. Influence of glazing and aging on the marginal, axial, axio-occlusal, and occlusal fit of 3-unit monolithic zirconia restorations fabricated using additive and subtractive techniques. J Prosthet Dent 2024;131:658.e1-658.e9.
  • 2. Hesse H, Özcan M. A review on current additive manufacturing technologies and materials used for fabrication of metal-ceramic fixed dental prosthesis. J Adhes Sci Technol 2021;35:2529-2546.
  • 3. Miura S, Shinya A, Ishida Y, Fujisawa M. Mechanical and surface properties of additive manufactured zirconia under the different building directions. J Prosthodont Res 2023;31;67(3):410-417.
  • 4. Li R, Xu T, Wang Y, Sun Y. Accuracy of zirconia crowns manufactured by stereolithography with an occlusal full-supporting structure: An in vitro study. J Prosthet Dent 2023;130:902-907.
  • 5. Kyung KY, Park JM, Heo SJ, Koak JY, Kim SK, Ahn JS, Yi Y. Comparative analysis of flexural strength of 3D printed and milled 4Y-TZP and 3Y-TZP zirconia. J Prosthet Dent 2024;131:529. e521-529. e529
  • 6. Lerner H, Nagy K, Pranno N, Zarone F, Admakin O, Mangano F. Trueness and precision of 3D-printed versus milled monolithic zirconia crowns: An in vitro study. J Dent 2021;113:103792
  • 7. Giugliano TS, Zhang Y, Janal MN, Lim CH, Smith RM, Choi M. In vitro comparison of physical characteristics of milled versus printed zirconia discs. J Prosthodont 2023.
  • 8. Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, Lu X, Shi H, Lee ES, Jiang HB. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021;17:9950131.
  • 9. Revilla‐León M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent 2019;31:51-57
  • 10. Rues S, Zehender N, Zenthöfer A, Bömicke W, Herpel C, Ilani A, Erber R, Roser C, Lux CJ, Rammelsberg P, Schwindling FS. Fit of anterior restorations made of 3D-printed and milled zirconia: An in-vitro study. J Dent 2023;130:104415
  • 11. Branco A, Silva R, Santos T, Jorge H, Rodrigues AR, Fernandes R, Bandarra S, Barahona I, Matos APA, Lorenz K, Polido M, Colaço R, Serro AP, Figueiredo-Pina CG. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater 2020;36:442-455.
  • 12. Sa MW, Nguyen BNB, Moriarty RA, Kamalitdinov T, Fisher JP, Kim JY. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications. Biotechnol Bioeng 2018;115:989-999.
  • 13. Hsu HJ, Lee SY, Jiang CP, Lin R. A comparison of the marginal fit and mechanical properties of a zirconia dental crown using CAM and 3DSP. Rapid Prototyp J 2019;25:1187-1197.
  • 14. Xing H, Zou B, Li S, Fu X. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceram Int 2017;43:16340-16347.
  • 15. Lyu J, Yang X, Li Y, Tan J, Liu X. Dimensional accuracy and clinical adaptation of monolithic zirconia crowns fabricated with the nanoparticle jetting technique. J Prosthet Dent 2024;132(5):985.e1-985.e7.
  • 16. Li R, Chen H, Wang Y, Zhou Y, Shen Z, Sun Y. Three-dimensional trueness and margin quality of monolithic zirconia restorations fabricated by additive 3D gel deposition. J Prosthodont Res 2020;64:478-484.
  • 17. Revilla-Leon M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent 2019;31:51-57
  • 18. Zhu H, Zhou Y, Jiang J, Wang Y, He F. Accuracy and margin quality of advanced 3D-printed monolithic zirconia crowns. J Prosthet Dent 2025;133(5):1284-1292
  • 19. Dewan H. Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis-A Systematic Review and Meta-Analysis. Biomimetics (Basel) 2023;8.
  • 20. Khanlar LN, Salazar Rios A, Tahmaseb A, Zandinejad A. Additive manufacturing of zirconia ceramic and its application in clinical dentistry: A review. Dent J 2021;9:104.
  • 21. Abualsaud R, Alalawi H. Fit, precision, and trueness of 3D-printed zirconia crowns compared to milled counterparts. Dent J 2022;10:215.
  • 22. Chavez LA, Ibave P, Wilburn B, Alexander IV D, Stewart C, Wicker R, Lin Y. The influence of printing parameters, post-processing, and testing conditions on the properties of binder jetting additive manufactured functional ceramics. Ceramics 2020;3:65-77.
  • 23. Branco AC, Colaço R, Figueiredo-Pina CG, Serro AP. Recent advances on 3D-printed zirconia-based dental materials: a review. Materials 2023;16:1860.
  • 24. Lüchtenborg J, Willems E, Zhang F, Wesemann C, Weiss F, Nold J, Sun J, Sandra F, Bai J, Reveron H, Chevalier J, Spies BC. Accuracy of additively manufactured zirconia four-unit fixed dental prostheses fabricated by stereolithography, digital light processing and material jetting compared with subtractive manufacturing. Dent Mater 2022;38:1459-1469.
  • 25. Kim MS, Hong MH, Min BK, Kim YK, Shin HJ, Kwon TY. Microstructure, flexural strength, and fracture toughness comparison between CAD/CAM milled and 3D-printed zirconia ceramics. Appl Sci 2022;12:9088.
  • 26. Komissarenko DA, Sokolov PS, Evstigneeva AD, Slyusar IV, Nartov AS, Volkov PA, Lyskov NV, Evdokimov V, Putlayev V, Dosovitsky AE. DLP 3D printing of scandia-stabilized zirconia ceramics. J Eur Ceram Soc 2021;41:684-690.
  • 27. Sokola P, Ptáček P, Bafti A, Panžić I, Mandić V, Blahut J, Kalina M. Comprehensive Study of Stereolithography and Digital Light Processing Printing of Zirconia Photosensitive Suspensions. Ceramics 2024;7:1616-1638.
  • 28. Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019;35:825-846.
  • 29. Liebermann A, Schultheis A, Faber F, Rammelsberg P, Rues S, Schwindling FS. Impact of post printing cleaning methods on geometry, transmission, roughness parameters, and flexural strength of 3D-printed zirconia. Dent Mater 2023;39:625-633.
  • 30. Hwangbo NK, Nam NE, Choi JH, Kim JE. Effects of the washing time and washing solution on the biocompatibility and mechanical properties of 3D printed dental resin materials. Polymers 2021;13:4410.
  • 31. Piedra-Cascón W, Krishnamurthy VR, Att W, Revilla-León M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J Dent 2021;109:103630.
  • 32. Zhang X, Wu X, Shi J. Additive manufacturing of zirconia ceramics. A state-of-the-art review. J Mater Res Technol 2020;9:9029-9048.
  • 33. Sun J, Binner J, Bai J. 3D printing of zirconia via digital light processing. optimization of slurry and debinding process. J Eur Ceram Soc 2020;40:5837-5844.
  • 34. Li R, Chen H, Wang Y, Sun Y. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs. J Mech Behav Biomed Mater 2021;115:104255.
  • 35. Lee HB, Noh M-J, Bae EJ, Lee WS, Kim JH. Accuracy of zirconia crown manufactured using stereolithography and digital light processing. J Dent 2024;141:104834.
  • 36. Schriwer C, Skjold A, Gjerdet NR, Øilo M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent Mater 2017;33:1012-1020.
  • 37. Candido LM, Fais LMG, Reis JMdSN, Pinelli LAP. Surface roughness and hardness of yttria stabilized zirconia (Y-TZP) after 10 years of simulated brushing. Revista de Odontologia da UNESP 2014;43:379-383.
  • 38. Roy M, Whiteside L, Katerberg B, Steiger JA. Phase transformation, roughness, and microhardness of artificially aged yttria‐and magnesia‐stabilized zirconia femoral heads. J Biomed Mater Res A 2007;83:1096-1102.
  • 39. Yarahmadi M, Roa J, Zhang J, Cabezas L, Ortiz-Membrado L, Llanes L, Fargas G. Micromechanical properties of Yttria-doped zirconia ceramics manufactured by direct ink writing. J Eur Ceram Soc 2023;43:2884-2893.
  • 40. Liu K, Sun H, Tan Y, Shi Y, Liu J, Zhang S, Huang S. Additive manufacturing of traditional ceramic powder via selective laser sintering with cold isostatic pressing. Int J Adv Manuf Technol 2017;90:945-952.
  • 41. Camargo B, Willems E, Jacobs W, Van-Landuyt K, Peumans M, Zhang F, Vleugels J, Van-Meerbeek B. 3D printing and milling accuracy influence full-contour zirconia crown adaptation. Dent Mater 2022;38:1963-1976.
  • 42. Zandinejad A, Das O, Barmak AB, Kuttolamadom M , Revilla‐León M. The flexural strength and flexural modulus of stereolithography additively manufactured zirconia with different porosities. J Prosthodont 2022;31:434-440.
  • 43. Buj-Corral I, Vidal D, Tejo-Otero A, Padilla JA, Xuriguera E, Fenollosa-Artés F. Characterization of 3D printed yttria-stabilized zirconia parts for use in prostheses. Nanomaterials 2021;11:2942.
  • 44. Revilla‐León M, Al‐Haj Husain N, Barmak AB, Pérez‐López J, Raigrodski AJ, Özcan M. Chemical composition and flexural strength discrepancies between milled and lithography‐based additively manufactured zirconia. J Prosthodont 2022;31:778-783.
  • 45. Silva NR, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J. Additive CAD/CAM process for dental prostheses. J Prosthodont 2011;20:93-96.
  • 46. Kim JH, Maeng WY, Koh YH, Kim HE. Digital light processing of zirconia prostheses with high strength and translucency for dental applications. Ceram Int 2020;46:28211-28218
  • 47. Li X, Zhong H, Zhang J, Duan Y, Li J, Jiang D. Fabrication of zirconia all‐ceramic crown via DLP‐based stereolithography. Int J Appl Ceram Technol 2020;17:844-853.
  • 48. Kao CT, Liu SH, Kao CY, Huang TH. Clinical evaluation of 3D-printed zirconia crowns fabricated by selective laser melting (SLM) for posterior teeth restorations: Short-term pilot study. J Dent Sci 2023;18:715-721.

3D-Printed Zirconia Restorations

Year 2025, Volume: 28 Issue: 3, 447 - 451, 30.09.2025
https://doi.org/10.7126/cumudj.1648247

Abstract

Zirconia, also known as zirconium dioxide, or ZrO₂, is a preferred ceramic material in dentistry because of its superior durability, chemical resistance, and compatibility with biological processes. The increasing demand for monolithic zirconia, which has traditionally been used as a substructure material in bilayer restorations, has led to advancements in manufacturing techniques. Although subtractive manufacturing (milling) is still the main technique for producing zirconia restorations, additive manufacturing (3D printing) has also emerged as an innovative techniques with remarkable benefits such as improved material efficiency, complex design possibilities and reduced material waste. Resolution restrictions, interlayer bonding concerns, and porosity continue to be difficulties, nevertheless, and demanding post-processing techniques like sintering and debinding are necessary to provide the greatest mechanical and aesthetic properties. According to recent research, 3D-printed zirconia offers marginal fit and adaptation that are clinically acceptable and mechanically comparable to those produced with subtractive manufacturing. Nonetheless, factors such as layer alignment, sintering settings, and margin design significantly influence the accuracy and durability of the final restoration. More long-term study is required to establish standardized techniques and evaluate the therapeutic usefulness of additively produced zirconia, as its clinical applicability has not been sufficiently explored despite the encouraging results. This review examines the latest developments, advantages and disadvantages of additive manufacturing for zirconia restorations, emphasizing its potential to advance digital dentistry.

References

  • 1. Toksoy D, Önöral Ö. Influence of glazing and aging on the marginal, axial, axio-occlusal, and occlusal fit of 3-unit monolithic zirconia restorations fabricated using additive and subtractive techniques. J Prosthet Dent 2024;131:658.e1-658.e9.
  • 2. Hesse H, Özcan M. A review on current additive manufacturing technologies and materials used for fabrication of metal-ceramic fixed dental prosthesis. J Adhes Sci Technol 2021;35:2529-2546.
  • 3. Miura S, Shinya A, Ishida Y, Fujisawa M. Mechanical and surface properties of additive manufactured zirconia under the different building directions. J Prosthodont Res 2023;31;67(3):410-417.
  • 4. Li R, Xu T, Wang Y, Sun Y. Accuracy of zirconia crowns manufactured by stereolithography with an occlusal full-supporting structure: An in vitro study. J Prosthet Dent 2023;130:902-907.
  • 5. Kyung KY, Park JM, Heo SJ, Koak JY, Kim SK, Ahn JS, Yi Y. Comparative analysis of flexural strength of 3D printed and milled 4Y-TZP and 3Y-TZP zirconia. J Prosthet Dent 2024;131:529. e521-529. e529
  • 6. Lerner H, Nagy K, Pranno N, Zarone F, Admakin O, Mangano F. Trueness and precision of 3D-printed versus milled monolithic zirconia crowns: An in vitro study. J Dent 2021;113:103792
  • 7. Giugliano TS, Zhang Y, Janal MN, Lim CH, Smith RM, Choi M. In vitro comparison of physical characteristics of milled versus printed zirconia discs. J Prosthodont 2023.
  • 8. Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, Lu X, Shi H, Lee ES, Jiang HB. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021;17:9950131.
  • 9. Revilla‐León M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent 2019;31:51-57
  • 10. Rues S, Zehender N, Zenthöfer A, Bömicke W, Herpel C, Ilani A, Erber R, Roser C, Lux CJ, Rammelsberg P, Schwindling FS. Fit of anterior restorations made of 3D-printed and milled zirconia: An in-vitro study. J Dent 2023;130:104415
  • 11. Branco A, Silva R, Santos T, Jorge H, Rodrigues AR, Fernandes R, Bandarra S, Barahona I, Matos APA, Lorenz K, Polido M, Colaço R, Serro AP, Figueiredo-Pina CG. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater 2020;36:442-455.
  • 12. Sa MW, Nguyen BNB, Moriarty RA, Kamalitdinov T, Fisher JP, Kim JY. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications. Biotechnol Bioeng 2018;115:989-999.
  • 13. Hsu HJ, Lee SY, Jiang CP, Lin R. A comparison of the marginal fit and mechanical properties of a zirconia dental crown using CAM and 3DSP. Rapid Prototyp J 2019;25:1187-1197.
  • 14. Xing H, Zou B, Li S, Fu X. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceram Int 2017;43:16340-16347.
  • 15. Lyu J, Yang X, Li Y, Tan J, Liu X. Dimensional accuracy and clinical adaptation of monolithic zirconia crowns fabricated with the nanoparticle jetting technique. J Prosthet Dent 2024;132(5):985.e1-985.e7.
  • 16. Li R, Chen H, Wang Y, Zhou Y, Shen Z, Sun Y. Three-dimensional trueness and margin quality of monolithic zirconia restorations fabricated by additive 3D gel deposition. J Prosthodont Res 2020;64:478-484.
  • 17. Revilla-Leon M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent 2019;31:51-57
  • 18. Zhu H, Zhou Y, Jiang J, Wang Y, He F. Accuracy and margin quality of advanced 3D-printed monolithic zirconia crowns. J Prosthet Dent 2025;133(5):1284-1292
  • 19. Dewan H. Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis-A Systematic Review and Meta-Analysis. Biomimetics (Basel) 2023;8.
  • 20. Khanlar LN, Salazar Rios A, Tahmaseb A, Zandinejad A. Additive manufacturing of zirconia ceramic and its application in clinical dentistry: A review. Dent J 2021;9:104.
  • 21. Abualsaud R, Alalawi H. Fit, precision, and trueness of 3D-printed zirconia crowns compared to milled counterparts. Dent J 2022;10:215.
  • 22. Chavez LA, Ibave P, Wilburn B, Alexander IV D, Stewart C, Wicker R, Lin Y. The influence of printing parameters, post-processing, and testing conditions on the properties of binder jetting additive manufactured functional ceramics. Ceramics 2020;3:65-77.
  • 23. Branco AC, Colaço R, Figueiredo-Pina CG, Serro AP. Recent advances on 3D-printed zirconia-based dental materials: a review. Materials 2023;16:1860.
  • 24. Lüchtenborg J, Willems E, Zhang F, Wesemann C, Weiss F, Nold J, Sun J, Sandra F, Bai J, Reveron H, Chevalier J, Spies BC. Accuracy of additively manufactured zirconia four-unit fixed dental prostheses fabricated by stereolithography, digital light processing and material jetting compared with subtractive manufacturing. Dent Mater 2022;38:1459-1469.
  • 25. Kim MS, Hong MH, Min BK, Kim YK, Shin HJ, Kwon TY. Microstructure, flexural strength, and fracture toughness comparison between CAD/CAM milled and 3D-printed zirconia ceramics. Appl Sci 2022;12:9088.
  • 26. Komissarenko DA, Sokolov PS, Evstigneeva AD, Slyusar IV, Nartov AS, Volkov PA, Lyskov NV, Evdokimov V, Putlayev V, Dosovitsky AE. DLP 3D printing of scandia-stabilized zirconia ceramics. J Eur Ceram Soc 2021;41:684-690.
  • 27. Sokola P, Ptáček P, Bafti A, Panžić I, Mandić V, Blahut J, Kalina M. Comprehensive Study of Stereolithography and Digital Light Processing Printing of Zirconia Photosensitive Suspensions. Ceramics 2024;7:1616-1638.
  • 28. Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019;35:825-846.
  • 29. Liebermann A, Schultheis A, Faber F, Rammelsberg P, Rues S, Schwindling FS. Impact of post printing cleaning methods on geometry, transmission, roughness parameters, and flexural strength of 3D-printed zirconia. Dent Mater 2023;39:625-633.
  • 30. Hwangbo NK, Nam NE, Choi JH, Kim JE. Effects of the washing time and washing solution on the biocompatibility and mechanical properties of 3D printed dental resin materials. Polymers 2021;13:4410.
  • 31. Piedra-Cascón W, Krishnamurthy VR, Att W, Revilla-León M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J Dent 2021;109:103630.
  • 32. Zhang X, Wu X, Shi J. Additive manufacturing of zirconia ceramics. A state-of-the-art review. J Mater Res Technol 2020;9:9029-9048.
  • 33. Sun J, Binner J, Bai J. 3D printing of zirconia via digital light processing. optimization of slurry and debinding process. J Eur Ceram Soc 2020;40:5837-5844.
  • 34. Li R, Chen H, Wang Y, Sun Y. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs. J Mech Behav Biomed Mater 2021;115:104255.
  • 35. Lee HB, Noh M-J, Bae EJ, Lee WS, Kim JH. Accuracy of zirconia crown manufactured using stereolithography and digital light processing. J Dent 2024;141:104834.
  • 36. Schriwer C, Skjold A, Gjerdet NR, Øilo M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent Mater 2017;33:1012-1020.
  • 37. Candido LM, Fais LMG, Reis JMdSN, Pinelli LAP. Surface roughness and hardness of yttria stabilized zirconia (Y-TZP) after 10 years of simulated brushing. Revista de Odontologia da UNESP 2014;43:379-383.
  • 38. Roy M, Whiteside L, Katerberg B, Steiger JA. Phase transformation, roughness, and microhardness of artificially aged yttria‐and magnesia‐stabilized zirconia femoral heads. J Biomed Mater Res A 2007;83:1096-1102.
  • 39. Yarahmadi M, Roa J, Zhang J, Cabezas L, Ortiz-Membrado L, Llanes L, Fargas G. Micromechanical properties of Yttria-doped zirconia ceramics manufactured by direct ink writing. J Eur Ceram Soc 2023;43:2884-2893.
  • 40. Liu K, Sun H, Tan Y, Shi Y, Liu J, Zhang S, Huang S. Additive manufacturing of traditional ceramic powder via selective laser sintering with cold isostatic pressing. Int J Adv Manuf Technol 2017;90:945-952.
  • 41. Camargo B, Willems E, Jacobs W, Van-Landuyt K, Peumans M, Zhang F, Vleugels J, Van-Meerbeek B. 3D printing and milling accuracy influence full-contour zirconia crown adaptation. Dent Mater 2022;38:1963-1976.
  • 42. Zandinejad A, Das O, Barmak AB, Kuttolamadom M , Revilla‐León M. The flexural strength and flexural modulus of stereolithography additively manufactured zirconia with different porosities. J Prosthodont 2022;31:434-440.
  • 43. Buj-Corral I, Vidal D, Tejo-Otero A, Padilla JA, Xuriguera E, Fenollosa-Artés F. Characterization of 3D printed yttria-stabilized zirconia parts for use in prostheses. Nanomaterials 2021;11:2942.
  • 44. Revilla‐León M, Al‐Haj Husain N, Barmak AB, Pérez‐López J, Raigrodski AJ, Özcan M. Chemical composition and flexural strength discrepancies between milled and lithography‐based additively manufactured zirconia. J Prosthodont 2022;31:778-783.
  • 45. Silva NR, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J. Additive CAD/CAM process for dental prostheses. J Prosthodont 2011;20:93-96.
  • 46. Kim JH, Maeng WY, Koh YH, Kim HE. Digital light processing of zirconia prostheses with high strength and translucency for dental applications. Ceram Int 2020;46:28211-28218
  • 47. Li X, Zhong H, Zhang J, Duan Y, Li J, Jiang D. Fabrication of zirconia all‐ceramic crown via DLP‐based stereolithography. Int J Appl Ceram Technol 2020;17:844-853.
  • 48. Kao CT, Liu SH, Kao CY, Huang TH. Clinical evaluation of 3D-printed zirconia crowns fabricated by selective laser melting (SLM) for posterior teeth restorations: Short-term pilot study. J Dent Sci 2023;18:715-721.
There are 48 citations in total.

Details

Primary Language English
Subjects Prosthodontics, Dental Materials
Journal Section Review
Authors

Tuğçe Karabulut Açıkgöz 0009-0007-0350-6831

Şevval Takva 0009-0000-2058-8532

Senay Canay 0000-0003-0485-361X

Publication Date September 30, 2025
Submission Date March 4, 2025
Acceptance Date March 21, 2025
Published in Issue Year 2025 Volume: 28 Issue: 3

Cite

EndNote Karabulut Açıkgöz T, Takva Ş, Canay S (September 1, 2025) 3D-Printed Zirconia Restorations. Cumhuriyet Dental Journal 28 3 447–451.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.