BibTex RIS Cite

Kompozit rezin materyallerin farklı ışık kaynaklarıyla polimerizasyonu sırasında oluşan ısısal değişikliklerin incelenmesi

Year 2008, Volume: 11 Issue: 1, 16 - 22, 11.11.2011

Abstract

Purpose: This in vitro study investigated the effect of three light curing units on the temperature rise under 2 mm thick dentin during polymerization of different resin composite materials.

Material and Methods: Three different light sources were used: A conventional halogen lamp (QTH), a plasma arc (Apollo 95E Elite) and a light-emitting diode (LED) light curing units. 90 dentin discs in 8 mm diameter and 2 mm thickness were obtained from freshly extracted premolar teeth. Fifteen disc-shaped specimens from each resin composite material (Admira, Filtek 60, Premise, Tetric Flow, Tetric Ceram and Filtek 250), 6 mm in diameter and 2 mm in depth, were placed on dentin discs in teflon molds (n=5). The specimens were irradiated with Standard mode of each light curing unit. A type-L thermocouple wire (Fe-Const.) connected to data logger (E-680) was used to record temperature rise which under dentin during polymerization by three different light sources. Data were analyzed by two-way ANOVA and Tukey tests.

Results: Among all light curing units, the highest temperature rise was recorded with use of the halogen LCU, and the LED irradiation led to the lowest temperture rises. The highest temperature rise was observed for Admira and Tetric Flow resin composites, whereas the lowest temperature rise was for Premise.

Conclusion: In all conditions tested, the temperature elevations were found to be lower than the critical value for pulpal injury reported in literature. Therefore, the LCUs used in this study could be safety for clinical situations mentioned before.

 

ÖZET

Amaç: Bu in vitro çalışma üç farklı ışık kaynağının farklı rezin kompozit materyallerin polimerizasyonu sırasında 2 mm dentin altında oluşan ısı artışına etkisini araştırdı.

Gereç ve Yöntem: Üç farklı ışık cihazı, bir halojen (QTH), bir plazma ark (Apollo 95E Elite) ve bir light-emitting diode (LED) kullanıldı. Yeni çekilmiş premolar dişlerden 8 mm çapında ve 2 mm kalınlığında 90 adet dentin disk hazırlandı. Her bir rezin kompozit materyalden (Admira, Filtek 60, Premise, Tetric Flow, Tetric Ceram and Filtek 250), 6 mm çap ve 2 mm derinlikte 15 örnek teflon moldda dentin üzerine yerleştirildi (n=5). Örnekler her bir ışık kaynağının standart modu ile polimerize edildi. Üniversal Girişli Gelişmiş Tarayıcı / Alarm Cihazına (E-680, Elimko Co., Turkey) bağlı bir Ltipi termokapl kablosu (Fe-Const.) polimerizasyon sırasında dentin altındaki ısı değişimlerini kaydetmek için kullanıldı. Veriler iki-yönlü varyans analizi ve Tukey testle değerlendirildi.

Bulgular: Tüm ışık kaynakları arasında en yüksek ısı artışı halojen ışık kaynağı kullanımı ile kaydedilirken LED irradiasyon en düşük ısı artışına neden oldu. En yüksek ısı artışı Admira and Tetric Flow kompozitlerde gözlemlenirken, en düşük ısı artışı Premise için belirlendi.

Sonuç: Test edilen tüm koşullarda ısı artışları pulpa hasarı için literatürde bildirilen kritik değerin altında bulundu. Dolayısıyla test edilen bu ışık kaynakları önceden belirtilen klinik koşullarda güvenle kullanılabilir.

Anahtar kelimeler: Kompozit, polimerizasyon, ısı artışı

References

  • Kleverlaan CJ, de Gee AJ. Curing efficiency and heat generation of various resin composites cured with high-intensity halogen lights. Eur J Oral Sci 2004; 112: 84-8.
  • Papadogiannis Y, Lakes RS, Palaghias G, Helvatjoglu- Antoniades M, Papadogiannis D. Fatigue of packable dental composites Dent Mater 2007; 23: 235-42.
  • Burgess JO, Norling BK, Rawls H, Ong JL. Directly placed esthetic restorative material. Compend Cont Edu 1996; 17(8): 731-46.
  • Unterbrink GL, Liebenbberg WH. Flowable resin composites as filled adhesives literature review and clinical recommendations. Quintessence Int 1999; 30: 249-57.
  • Bayne SC, Thompson JY, Swift EJ, Stamatiades P, Wilkerson M. A characterization of first generation flowable composites. JADA : 129: 567-77. Dayangaç GB. Kompozit Rezin Restorasyonlar. Ankara; Öncü Basımevi, 2000,
  • Chen HY, Manhart J, Hickel R, Kunzelmann KH. Polimerization contraction stress in lightcured packable composite resins. Dental Mater 2001; 17: 253-9.
  • Jackson Ronald D, Morgan M. The new posterior resins and a simplified placement technique. JADA 2000;131: 375-83.
  • Leinfelder KF. A report on a new condensable composite resin. Compendium 1998; 19: 230-7.
  • Manhart J, Kunzelman KH, Chen HY, Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dental Mater 2000; 16(1): 33-40.
  • Craig RG. Restorative Dental Materials. 9th ed. St. Louis; Mosby: , 1993.
  • Hickel R, Dasch W, Jandam M, Anusavice K. New direct restorative materials. Int Dent J 1998; 48: 3-16.
  • Bouilllguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC, Krejci I. Thermal risks from LED-and high-intensity QTH- curing units during polymerization of dental resins. J Biomed Mater Res Part B: Appl Biomater 2005; 72B: 260-7.
  • Wataha JC, Lockwood PE, Lewis JB, Rueggeberg FA, Messer RLW. Biological effects of blue light from dental curing units. Dent Mater 2004; 20:150-7.
  • Hofmann N, Hugo B, Klaiber B. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur J Oral Sci 2002; 110: 471-9.
  • Jandt KD, Mills RW, Blackwell GB, Ashworth SH. Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dent Mater 2000; 16: 41-7.
  • Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J 1999; 186: 388-91.
  • Kurachi C, Tuboy AM, Magalhães DV, Bagnato VS. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater 2001; 17: 309-15.
  • Oberholzer TG, Du Preez IC, Kidd M. Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin-based composite restoration. Biomaterials 2005; 26: 3981-6.
  • Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G. Influence of light intensity from different curing units upon composite temperature rise. J Oral Rehabil 2005; 32: 362-7
  • Amaral CM, Cavalcante LMA, Ambrosano GMB, Pimenta LAF. Microleakage evaluation of resin composite restorations polymerized with different blue light-emitting diode units (LED). Cienc Odontol Bras 2005;8:19-24.
  • Awliya WY. The influence of temperature on the efficacy of polymerization of composite resin. J Contemp Dent Pract 2007; 8: 9-16.
  • Schneider LFJ, Consani S, Correr-Sobrinho L, Correr AB, Sinhoreti MA. Halogen and LED light curing of composite: temperature increase and Knoop hardness. Clin Oral Invest 2006; 10: 66-71.
  • Yazıcı AR, Müftü A, Kugel G, Perry RD. Comparison of temperature changes in the pulp chamber induced by various light curing units, ın vitro. Oper Dent 2006; 31: 261-5.
  • Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999; 15: 275-81.
  • Lovell LG, Newman SM, Donaldson MM, Bowman CN. The effect of light intensity on double bond conversion and flexural strength of a model, unfilled dental resin. Dent Mater 2003; 19: 458-65.
  • Deb S, Sehmi H. A comparative study of the properties of dental resin composites polymerized with plasma and halogen light. Dent Mater 2003; 19: 517-22.
  • Smail SRJ, Patterson CJW, McLundie AC, Strang R. In vitro temperature rises during visible light curing of a lining material and a posterior composite. J Oral Rehabil 1988; 15: 361-6.
  • Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006; 96: 328-31.
  • Loney RW, Price RB. Temperature transmission of high output light-curing units through dentin. Oper Dent 2001; 26: 516–20.
  • Tjan AH, Dunn JR. Temperature rise produced by various visible light generators through dentinal barriers. J Prosthet Dent 1988; 59: 433-8.
  • Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J Dent 2007; 35: 238-45.
  • Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965; 19: 515-30.
  • Aguiar FHB, Barros GKP, Santos AJS, Ambrosano GMB, Lovadino JR. Effect of polymerization modes and resin composite on the temperature rise of human dentin of different thickneses: An in vitro study. Oper Dent 2005; 30: 602-7.
  • Shortall AC, Harrington E. Temperature rise during polymerization of light-activated resin composites. J Oral Rehab 1998; 25: 908-13.
  • Masutani S, Setcos JC, Schnell RJ, Phillips RW. Temperature rise during polymerization of visible light-activated composite resins. Dent Mater 1988; 4: 174- 7.
  • Lloyd CH, Joshi A, McGlynn E. Temperature rises produced by light sources and composites during curing. Dent Mater 1986; 2: 170-4.
  • Strang R, Patterson CJW, McLundie AC, Cummings A. Smail SRJ. In-vitro temperature rises produced by five polymerizing light sources. J Oral Rehab 1988;15:361-6.
  • Yap AUJ, Wong NY, Siow KS. Composite cure and shrinkage associated with high intensity cuing light. Oper Dent 2000; 25: 98-103.
  • Özturk B, Özturk AN, Üsumez A, Üsumez S, Özer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent 2004; 29(3): 325-32.
  • Rueggeberg FA. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl. 1999; 25: 4-15.
  • Yap AU, Soh MS. Thermal emission by different light-curing units. Oper Dent 2003; 28(3): 260-6.
  • Tarle Z, Knezevic A, Demoli N, Meniga A, Sutalo J, Unterbrink G, Ristic M, Pichler G. Comparison of composite curing parameters: Effects of light source and curing mode on conversion, temperature rise and polymerization shrinkage. Oper Dent 2006; 31: 219-26

KOMPOZİT REZİN MATERYALLERİN FARKLI IŞIK KAYNAKLARIYLA POLİMERİZASYONU SIRASINDA OLUŞAN ISISAL DEĞİŞİKLİKLERİN İNCELENMESİ

Year 2008, Volume: 11 Issue: 1, 16 - 22, 11.11.2011

Abstract

Amaç: Bu in vitro çalışma üç farklı ışık kaynağının farklı rezin kompozit materyallerin polimerizasyonu sırasında 2 mm dentin altında oluşan ısı artışına etkisini araştırdı.Gereç ve Yöntem: Üç farklı ışık cihazı, bir halojen (QTH), bir plazma ark (Apollo 95E Elite) ve bir light-emitting diode (LED) kullanıldı. Yeni çekilmiş premolar dişlerden 8 mm çapında ve 2 mm kalınlığında 90 adet dentin disk hazırlandı. Her bir rezin kompozit materyalden (Admira, Filtek 60, Premise, Tetric Flow, Tetric Ceram and Filtek 250), 6 mm çap ve 2 mm derinlikte 15 örnek teflon moldda dentin üzerine yerleştirildi (n=5). Örnekler her bir ışık kaynağının standart modu ile polimerize edildi. Üniversal Girişli Gelişmiş Tarayıcı / Alarm Cihazına (E-680, Elimko Co., Turkey) bağlı bir Ltipi termokapl kablosu (Fe-Const.) polimerizasyon sırasında dentin altındaki ısı değişimlerini kaydetmek için kullanıldı. Veriler iki-yönlü varyans analizi ve Tukey testle değerlendirildi. Bulgular: Tüm ışık kaynakları arasında en yüksek ısı artışı halojen ışık kaynağı kullanımı ile kaydedilirken LED irradiasyon en düşük ısı artışına neden oldu. En yüksek ısı artışı Admira and Tetric Flow kompozitlerde gözlemlenirken, en düşük ısı artışı Premise için belirlendi. Sonuç: Test edilen tüm koşullarda ısı artışları pulpa hasarı için literatürde bildirilen kritik değerin altında bulundu. Dolayısıyla test edilen bu ışık kaynakları önceden belirtilen klinik koşullarda güvenle kullanılabilir

References

  • Kleverlaan CJ, de Gee AJ. Curing efficiency and heat generation of various resin composites cured with high-intensity halogen lights. Eur J Oral Sci 2004; 112: 84-8.
  • Papadogiannis Y, Lakes RS, Palaghias G, Helvatjoglu- Antoniades M, Papadogiannis D. Fatigue of packable dental composites Dent Mater 2007; 23: 235-42.
  • Burgess JO, Norling BK, Rawls H, Ong JL. Directly placed esthetic restorative material. Compend Cont Edu 1996; 17(8): 731-46.
  • Unterbrink GL, Liebenbberg WH. Flowable resin composites as filled adhesives literature review and clinical recommendations. Quintessence Int 1999; 30: 249-57.
  • Bayne SC, Thompson JY, Swift EJ, Stamatiades P, Wilkerson M. A characterization of first generation flowable composites. JADA : 129: 567-77. Dayangaç GB. Kompozit Rezin Restorasyonlar. Ankara; Öncü Basımevi, 2000,
  • Chen HY, Manhart J, Hickel R, Kunzelmann KH. Polimerization contraction stress in lightcured packable composite resins. Dental Mater 2001; 17: 253-9.
  • Jackson Ronald D, Morgan M. The new posterior resins and a simplified placement technique. JADA 2000;131: 375-83.
  • Leinfelder KF. A report on a new condensable composite resin. Compendium 1998; 19: 230-7.
  • Manhart J, Kunzelman KH, Chen HY, Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dental Mater 2000; 16(1): 33-40.
  • Craig RG. Restorative Dental Materials. 9th ed. St. Louis; Mosby: , 1993.
  • Hickel R, Dasch W, Jandam M, Anusavice K. New direct restorative materials. Int Dent J 1998; 48: 3-16.
  • Bouilllguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC, Krejci I. Thermal risks from LED-and high-intensity QTH- curing units during polymerization of dental resins. J Biomed Mater Res Part B: Appl Biomater 2005; 72B: 260-7.
  • Wataha JC, Lockwood PE, Lewis JB, Rueggeberg FA, Messer RLW. Biological effects of blue light from dental curing units. Dent Mater 2004; 20:150-7.
  • Hofmann N, Hugo B, Klaiber B. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur J Oral Sci 2002; 110: 471-9.
  • Jandt KD, Mills RW, Blackwell GB, Ashworth SH. Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dent Mater 2000; 16: 41-7.
  • Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J 1999; 186: 388-91.
  • Kurachi C, Tuboy AM, Magalhães DV, Bagnato VS. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater 2001; 17: 309-15.
  • Oberholzer TG, Du Preez IC, Kidd M. Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin-based composite restoration. Biomaterials 2005; 26: 3981-6.
  • Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G. Influence of light intensity from different curing units upon composite temperature rise. J Oral Rehabil 2005; 32: 362-7
  • Amaral CM, Cavalcante LMA, Ambrosano GMB, Pimenta LAF. Microleakage evaluation of resin composite restorations polymerized with different blue light-emitting diode units (LED). Cienc Odontol Bras 2005;8:19-24.
  • Awliya WY. The influence of temperature on the efficacy of polymerization of composite resin. J Contemp Dent Pract 2007; 8: 9-16.
  • Schneider LFJ, Consani S, Correr-Sobrinho L, Correr AB, Sinhoreti MA. Halogen and LED light curing of composite: temperature increase and Knoop hardness. Clin Oral Invest 2006; 10: 66-71.
  • Yazıcı AR, Müftü A, Kugel G, Perry RD. Comparison of temperature changes in the pulp chamber induced by various light curing units, ın vitro. Oper Dent 2006; 31: 261-5.
  • Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999; 15: 275-81.
  • Lovell LG, Newman SM, Donaldson MM, Bowman CN. The effect of light intensity on double bond conversion and flexural strength of a model, unfilled dental resin. Dent Mater 2003; 19: 458-65.
  • Deb S, Sehmi H. A comparative study of the properties of dental resin composites polymerized with plasma and halogen light. Dent Mater 2003; 19: 517-22.
  • Smail SRJ, Patterson CJW, McLundie AC, Strang R. In vitro temperature rises during visible light curing of a lining material and a posterior composite. J Oral Rehabil 1988; 15: 361-6.
  • Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006; 96: 328-31.
  • Loney RW, Price RB. Temperature transmission of high output light-curing units through dentin. Oper Dent 2001; 26: 516–20.
  • Tjan AH, Dunn JR. Temperature rise produced by various visible light generators through dentinal barriers. J Prosthet Dent 1988; 59: 433-8.
  • Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J Dent 2007; 35: 238-45.
  • Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965; 19: 515-30.
  • Aguiar FHB, Barros GKP, Santos AJS, Ambrosano GMB, Lovadino JR. Effect of polymerization modes and resin composite on the temperature rise of human dentin of different thickneses: An in vitro study. Oper Dent 2005; 30: 602-7.
  • Shortall AC, Harrington E. Temperature rise during polymerization of light-activated resin composites. J Oral Rehab 1998; 25: 908-13.
  • Masutani S, Setcos JC, Schnell RJ, Phillips RW. Temperature rise during polymerization of visible light-activated composite resins. Dent Mater 1988; 4: 174- 7.
  • Lloyd CH, Joshi A, McGlynn E. Temperature rises produced by light sources and composites during curing. Dent Mater 1986; 2: 170-4.
  • Strang R, Patterson CJW, McLundie AC, Cummings A. Smail SRJ. In-vitro temperature rises produced by five polymerizing light sources. J Oral Rehab 1988;15:361-6.
  • Yap AUJ, Wong NY, Siow KS. Composite cure and shrinkage associated with high intensity cuing light. Oper Dent 2000; 25: 98-103.
  • Özturk B, Özturk AN, Üsumez A, Üsumez S, Özer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent 2004; 29(3): 325-32.
  • Rueggeberg FA. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl. 1999; 25: 4-15.
  • Yap AU, Soh MS. Thermal emission by different light-curing units. Oper Dent 2003; 28(3): 260-6.
  • Tarle Z, Knezevic A, Demoli N, Meniga A, Sutalo J, Unterbrink G, Ristic M, Pichler G. Comparison of composite curing parameters: Effects of light source and curing mode on conversion, temperature rise and polymerization shrinkage. Oper Dent 2006; 31: 219-26
There are 42 citations in total.

Details

Primary Language English
Journal Section Original Research Articles
Authors

İhsan Hubbezoglu

Arife Dogan

Orhan Dogan

Hakan Demir

Publication Date November 11, 2011
Submission Date November 11, 2011
Published in Issue Year 2008Volume: 11 Issue: 1

Cite

EndNote Hubbezoglu İ, Dogan A, Dogan O, Demir H (November 1, 2011) Kompozit rezin materyallerin farklı ışık kaynaklarıyla polimerizasyonu sırasında oluşan ısısal değişikliklerin incelenmesi. Cumhuriyet Dental Journal 11 1 16–22.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.