Research Article
BibTex RIS Cite

Yerel Rifamicin Uygulamasının Bmp-2 ve Kemik Rejenerasyon Açısından Etkisi

Year 2017, , 80 - 87, 31.08.2017
https://doi.org/10.7126/cumudj.345934

Abstract

Amaç: Bu
çalışmanın amacı lokal rifamisin uygulamasının kemik iyileşmesi sırasında BMP–2
salınımı üzerine etkisinin değerlendirilmesidir.

Materyal
ve method:

Rat mandibula angulus bölgesinde standart olarak 5 mm çapında kritik boyutta
kemik defektleri oluşturulmuştur. Kontrol grubunda (8 rat) defektlere herhangi
bir uygulama yapılmamıştır. Birinci deney grubunda (8 rat) defekt bölgesi
rifamisin solüsyonu ile irrige edildikten sonra, defekt bölgesine 1, 3 ve 7.
günlerde 25 mg rifamisin solüsyonu enjekte edilmiştir. İkinci deney grubunda (8
rat) defekt bölgesi 25 mg rifamisin solüsyonu ile karıştırılmış gelatin sponge
ile greftlenmiştir. Cerrahiden 21 gün sonra ratlar sakrifiye edilmiştir. Defekt
bölgesinden hem immünhistokimyasal analiz (kemik morfogenetik protein –2
antibody) için hem de histomorfometrik analiz için histolojik kesitler
hazırlanmıştır. Elde edilen verilerin analizi Mann Whitney U ve Kruskall Wallis
testi kullanılarak yapılmıştır.

Bulgular: Deney
grubunda kontrol grubuna göre ortalama yeni kemik formasyonu, osteoblast sayısı
ve yeni damar oluşum sayısında artış olduğu görülmüştür. Her iki deney grubunda
da anti–bmp–2 ile işaretlenmenin (hücre sayma) kontrol grubuna göre daha fazla
olduğu görülmüştür.







Sonuç: Kritik
boyutta kemik defektlerine lokal olarak rifamisin uygulamasının BMP–2 salınımı
üzerine pozitif etkileri olduğu tespit edilmiştir. 

References

  • 1. Misch CE, Contemporary Implant Dentistry. Third edition: USA; Mosby Elsevier. 2008, p.840.
  • 2. Verdugo F, Saez-Roson A, Uribarri A, et al. Bone microbial decontamination agents in osseos grafting: an in-vitro study with fresh human explants. J Periodontol 2011; 82: 863-871.
  • 3. Anderson L, Kahnberg KE, Pogrel MA. Oral and Maxillofacial Surgery, First edition, Oxford, United Kingdom: Wiley-Blackwell; 2010. p.172.
  • 4. Fonseca RJ, Marciani RD, Turvey TA. Oral and Maxillofacial Surgery, Second edition, First volume: USA; Sounders Elsevier, 2008, p.388.
  • 5. Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg 2002;10: 53-60.
  • 6. Ueng SW, Mel S. Lee MS, Lin SS, Chan EC, Liu SJ. Development of a Biodegradable Alginate Carrier System for Antibiotics and Bone Cells. J Orthop Res 2007;25:62–72.
  • 7. Reddi AH. Implant-stimulated interface reactions during collagenous bone matrix- induced bone formation. J Biomed Mater Res 1985;19: 233-239.
  • 8. Garg AK, Linch SE, Genco R. Grafting materials in repair and restoration. Tissue engineering: Applications in oral and maxillofacial surgery and periodontics. Chicago: Quintessence; 1999.
  • 9. Marx RE. Bone and bone graft healing. Oral Maxillofac Surg Clin North Am 2007; 4: 455-466.
  • 10. Reynolds MA, Aichelman-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: bone replacement grafts. Dent Clin North Am 2010; 54: 55-71.
  • 11. Spagnoli D and Choi C. Extraction socket grafting and buccal wall regeneration with recombinant human bone morphogenetic protein-2 and acellular collogen sponge. Atlas Oral Maxillofac Clin North Am 2013; 21: 175-83.
  • 12. Wozney JM. The bone morphogenetic protein family: Multifuntional cellular regulars in the embryo and adult. Eur J Oral Sci 1998;106: 160-166.
  • 13. De marco AC, Jardini MA, Modolo F, Nunes FD, De Lima LA. Immunolocalization of bone morphogenetic protein 2 during the early healing events after guided bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 4: 533-544.
  • 14. Köşüş A, Köşüş N, Güler A, Çapar M. Rifamycin SV application to subcutaneous tissue for prevention of post-cesarean surgical site infection. Eur J Gen Med 2010;3: 269-276.
  • 15. Laxenaire MC, Mouton C, Frederic A, Viry-Babel F, Bouchon Y. Anaphylactic shock after tourniquet removal in or-tophedic surgery. Ann Fr Anesth Reanim 1996; 15: 179–84.
  • 16. Yaman F, Unlü G, Atilgan S, Çelik Y, Ozekinci T, Yaldız M. Microbiologic and histologic assessment of intentional bacterial contamination of bone grafts. J Oral Maxillofac Surg 2007; 65: 1490-4.
  • 17. de Carvalho PS, Mariano RC, Okamoto T. Treatment of fibrinolytic alveolitis with rifamycin B diethylamide associated with gelfoam: a histological study. Braz Dent J 1997; 8: 3-8.
  • 18. Sivolella S, Berengo M, Scarin M, Mella F, Martinelli F. Autogenous particulate bone collected with a piezo-electric surgical device and bone trap: a microbiological and histomorphometric study. Arch Oral Biol 2006; 51: 883—891.
  • 19. Kaya A, Kaya B, Aktaş A, Fırat ET. Effect of rifampin in combination with allogenic, alloplastic, and heterogenous bone grafts on bone regenerationin rat tibial bone defects. J Oral Maxillofac Surg Med Pathol 2015; 27: 20-28.
  • 20. Tasdemir U, Özeç İ, Esen HH, Avunduk MC. The Influence of Rifamycin Decontamination on Incorporation of Autologous Onlay Bone Grafts in Rats: A Histometric and Immunohistochemical Evaluation. Arch Oral Biol 2015; 60: 724-729.
  • 21. Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011; 7: 1070-4.
  • 22. Tabrizi R, Khorshidi H, Shahidi S, Gholami M, Kalbasi S, Khayati A. Use of lincomycin-ımpregnated demineralized freeze-dried bone allograft in the periodontal defect after third molar surgery. J Oral Maxillofac Surg 2014; 72: 850-57.
  • 23. Isefuku S, Joyner CJ, Simson AH. Toxic effect of rifampicin on human osteoblast-like cells.J Orthop Res 2001; 19: 950-4.
  • 24. Rosette C, Buendiya-Laysa F, Patkar S, Moro L, Celasco G, Bozzella R, et al. Anti-inflammatory and immunomodulatory activities of rifamycin SV. Int J Antimicrob Agents 2013;42:182-6.
  • 25. Caruso I. Twenty years of experience with intra-articular rifamycin for chronic arthritides. J Int Med Res 1997;25:307–17. 

  • 26. Almazin SM, Dziak R, Andreana S, Ciancio SG. The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hyrochlride on osteoblastic proliferation and differentiation in vitro. J Periodontol 2009; 80: 999-1005.
  • 27. Knaepler H. Local application of gentamycin-containing collogen implant in the prophylaxis and treatment of surgical site infection in orthopaedic surgery. Int J Surg 2012; 10: 515-520.
  • 28. Park JB. Effects of doxycycline, minocycline, and tetracycline on cell proliferation, differentiation, and protein expression in osteoprecursor cells. J Craniofac Surg 2011; 22: 1839-42.
  • 29. Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 2002; 143:1545-1553.
  • 30. ZhangF, QiuT, WuX, Wan C, Shi W, WangY, et al. Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 2009; 24:1224-1233.
  • 31. Muthukuru M, Sun J. Doxycycline counteracts bone morphogenetic protein 1-induced osteogenic mediators. J Periodontol 2013; 84: 656-665.
  • 32. Wübbenhorst D, Dumler K, Wagner B, Wexel G, Imhoff A, Gansbacher B, et al. Tetracycline-regulated bone morphogenetic protein 2 gene expression in lentivirally transduced primary rabbit chondrocytes for treatment of cartilage defects. Arthritis Rheum 2010: 62; 2037-2046.
  • 33. Liu Z, Shi W, Ji X, Sun C, Jee WS, Wu Y, et al. Molecules mimicking Smad1 interacting with Hox stimulate bone formation. J Biol Chem 2004; 279:11313-1131.

EFFECT OF LOCAL RIFAMYCIN APPLICATION ON EXPRESSION OF BMP-2 AND BONE REGENERATION

Year 2017, , 80 - 87, 31.08.2017
https://doi.org/10.7126/cumudj.345934

Abstract

Objectives:
The aim of this study was to evaluate effect of local rifamycin application on
BMP-2 expression and bone healing.

Materials and Methods:
A standardized 5.0-mm- diameter critical size bone defect was created mandible
angulus region. In the control group (8 rats) defects were left empty. In the
Group 1 (n=8 rats) defect was irrigated with rifamycin solution and 25 mg
rifamycin solution injected defect area at 1, 3, 7 days after surgery. In the
group 2 (n=8 rats) defects were grafted with a gelatin sponge mixed 25 mg
rifamycin solution. Rats were sacrificed at 21 days after surgery. Histological
slides were prepared from defect site for both immunohistochemical analysis
(bone morphogenetic protein-2 (BMP-2) antibody) and histomorphometric analysis.
Data were analyzed using Mann Whitney U and Kruskall Wallis test.

Results:
The average new bone formation, number of osteoblast and new vessel formation
count were increased more in both of experimental groups in comparison with
control group. Anti-BMP-2 labelling (Cell count) was increased more in both of
experimental groups in comparison with control group.







Conclusion:
Local rifamycin application has positive effects on BMP-2 expression and bone regeneration
at critical sized bone defects.

References

  • 1. Misch CE, Contemporary Implant Dentistry. Third edition: USA; Mosby Elsevier. 2008, p.840.
  • 2. Verdugo F, Saez-Roson A, Uribarri A, et al. Bone microbial decontamination agents in osseos grafting: an in-vitro study with fresh human explants. J Periodontol 2011; 82: 863-871.
  • 3. Anderson L, Kahnberg KE, Pogrel MA. Oral and Maxillofacial Surgery, First edition, Oxford, United Kingdom: Wiley-Blackwell; 2010. p.172.
  • 4. Fonseca RJ, Marciani RD, Turvey TA. Oral and Maxillofacial Surgery, Second edition, First volume: USA; Sounders Elsevier, 2008, p.388.
  • 5. Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg 2002;10: 53-60.
  • 6. Ueng SW, Mel S. Lee MS, Lin SS, Chan EC, Liu SJ. Development of a Biodegradable Alginate Carrier System for Antibiotics and Bone Cells. J Orthop Res 2007;25:62–72.
  • 7. Reddi AH. Implant-stimulated interface reactions during collagenous bone matrix- induced bone formation. J Biomed Mater Res 1985;19: 233-239.
  • 8. Garg AK, Linch SE, Genco R. Grafting materials in repair and restoration. Tissue engineering: Applications in oral and maxillofacial surgery and periodontics. Chicago: Quintessence; 1999.
  • 9. Marx RE. Bone and bone graft healing. Oral Maxillofac Surg Clin North Am 2007; 4: 455-466.
  • 10. Reynolds MA, Aichelman-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: bone replacement grafts. Dent Clin North Am 2010; 54: 55-71.
  • 11. Spagnoli D and Choi C. Extraction socket grafting and buccal wall regeneration with recombinant human bone morphogenetic protein-2 and acellular collogen sponge. Atlas Oral Maxillofac Clin North Am 2013; 21: 175-83.
  • 12. Wozney JM. The bone morphogenetic protein family: Multifuntional cellular regulars in the embryo and adult. Eur J Oral Sci 1998;106: 160-166.
  • 13. De marco AC, Jardini MA, Modolo F, Nunes FD, De Lima LA. Immunolocalization of bone morphogenetic protein 2 during the early healing events after guided bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 4: 533-544.
  • 14. Köşüş A, Köşüş N, Güler A, Çapar M. Rifamycin SV application to subcutaneous tissue for prevention of post-cesarean surgical site infection. Eur J Gen Med 2010;3: 269-276.
  • 15. Laxenaire MC, Mouton C, Frederic A, Viry-Babel F, Bouchon Y. Anaphylactic shock after tourniquet removal in or-tophedic surgery. Ann Fr Anesth Reanim 1996; 15: 179–84.
  • 16. Yaman F, Unlü G, Atilgan S, Çelik Y, Ozekinci T, Yaldız M. Microbiologic and histologic assessment of intentional bacterial contamination of bone grafts. J Oral Maxillofac Surg 2007; 65: 1490-4.
  • 17. de Carvalho PS, Mariano RC, Okamoto T. Treatment of fibrinolytic alveolitis with rifamycin B diethylamide associated with gelfoam: a histological study. Braz Dent J 1997; 8: 3-8.
  • 18. Sivolella S, Berengo M, Scarin M, Mella F, Martinelli F. Autogenous particulate bone collected with a piezo-electric surgical device and bone trap: a microbiological and histomorphometric study. Arch Oral Biol 2006; 51: 883—891.
  • 19. Kaya A, Kaya B, Aktaş A, Fırat ET. Effect of rifampin in combination with allogenic, alloplastic, and heterogenous bone grafts on bone regenerationin rat tibial bone defects. J Oral Maxillofac Surg Med Pathol 2015; 27: 20-28.
  • 20. Tasdemir U, Özeç İ, Esen HH, Avunduk MC. The Influence of Rifamycin Decontamination on Incorporation of Autologous Onlay Bone Grafts in Rats: A Histometric and Immunohistochemical Evaluation. Arch Oral Biol 2015; 60: 724-729.
  • 21. Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011; 7: 1070-4.
  • 22. Tabrizi R, Khorshidi H, Shahidi S, Gholami M, Kalbasi S, Khayati A. Use of lincomycin-ımpregnated demineralized freeze-dried bone allograft in the periodontal defect after third molar surgery. J Oral Maxillofac Surg 2014; 72: 850-57.
  • 23. Isefuku S, Joyner CJ, Simson AH. Toxic effect of rifampicin on human osteoblast-like cells.J Orthop Res 2001; 19: 950-4.
  • 24. Rosette C, Buendiya-Laysa F, Patkar S, Moro L, Celasco G, Bozzella R, et al. Anti-inflammatory and immunomodulatory activities of rifamycin SV. Int J Antimicrob Agents 2013;42:182-6.
  • 25. Caruso I. Twenty years of experience with intra-articular rifamycin for chronic arthritides. J Int Med Res 1997;25:307–17. 

  • 26. Almazin SM, Dziak R, Andreana S, Ciancio SG. The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hyrochlride on osteoblastic proliferation and differentiation in vitro. J Periodontol 2009; 80: 999-1005.
  • 27. Knaepler H. Local application of gentamycin-containing collogen implant in the prophylaxis and treatment of surgical site infection in orthopaedic surgery. Int J Surg 2012; 10: 515-520.
  • 28. Park JB. Effects of doxycycline, minocycline, and tetracycline on cell proliferation, differentiation, and protein expression in osteoprecursor cells. J Craniofac Surg 2011; 22: 1839-42.
  • 29. Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 2002; 143:1545-1553.
  • 30. ZhangF, QiuT, WuX, Wan C, Shi W, WangY, et al. Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 2009; 24:1224-1233.
  • 31. Muthukuru M, Sun J. Doxycycline counteracts bone morphogenetic protein 1-induced osteogenic mediators. J Periodontol 2013; 84: 656-665.
  • 32. Wübbenhorst D, Dumler K, Wagner B, Wexel G, Imhoff A, Gansbacher B, et al. Tetracycline-regulated bone morphogenetic protein 2 gene expression in lentivirally transduced primary rabbit chondrocytes for treatment of cartilage defects. Arthritis Rheum 2010: 62; 2037-2046.
  • 33. Liu Z, Shi W, Ji X, Sun C, Jee WS, Wu Y, et al. Molecules mimicking Smad1 interacting with Hox stimulate bone formation. J Biol Chem 2004; 279:11313-1131.
There are 33 citations in total.

Details

Subjects Health Care Administration
Journal Section Original Research Articles
Authors

Emin Ün

İlker Özeç

Ufuk Taşdemir

Mustafa Kırtay

Hacı Hasan Esen

Mustafa Cihat Avunduk

Publication Date August 31, 2017
Submission Date October 23, 2017
Published in Issue Year 2017

Cite

EndNote Ün E, Özeç İ, Taşdemir U, Kırtay M, Esen HH, Avunduk MC (August 1, 2017) EFFECT OF LOCAL RIFAMYCIN APPLICATION ON EXPRESSION OF BMP-2 AND BONE REGENERATION. Cumhuriyet Dental Journal 20 2 80–87.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.