Research Article
BibTex RIS Cite

Comparisons of the Bonding Strength of Heat-Treated Composite Resins to Different CAD/CAM Ceramics

Year 2025, Volume: 28 Issue: 4, 594 - 599, 29.12.2025
https://doi.org/10.7126/cumudj.1807056

Abstract

Aim: The aim of this study was to evaluate the bonding strength of pre-heated composite resins used in the repair of CAD/CAM ceramic materials.
Material and Method: Samples prepared from Feldspathic ceramic (VITABlocs Mark II, VITA Zahnfabrik, Germany), Hybrid ceramic (Vita Enamic, VITA Zahnfabrik, Germany), Zirconia-reinforced lithium silicate ceramic (Vita Suprinity, VITA Zahnfabrik, Germany) CAD/CAM materials were fixed in autopolymerised acrylic. The samples were separated into two groups (n=10) according to the temperature of the composite resin. As the surface procedure, 9% hydrofluoric porcelain acid (Ultradent Products Inc., Cologne, Germany) was applied to the ceramic surface for 20 seconds. In accordance with the manufacturer’s instructions, Monobond was applied for 20 seconds and Heliobond for 10 seconds. The composite resins at different temperatures (23±2°C, 65°C) were placed in silicone moulds (4mm diameter, 2mm height) and polymerised. The bonding strength of the samples was measured in a Universal test device and the data were analyzed using the Two-way ANOVA and Tukey test in SPSS vn. 23.00 software.
Results: The highest bonding strength value (60.58 MPa) was obtained in Group VS-RT and the lowest (4.36 MPa) in Group VB-PHT. No significant difference was observed between Group VB and Group VE (p>0.05). A significant difference was determined in Group VS.
Conclusion: Within the limitations of the study, the results showed that heat-treated composite resin reduced the bonding strength of Vita Suprinity material and increased the bonding strength of Feldspathic and Vita Enamic ceramics.

References

  • 1. Baroudi K, Ibraheem SN. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: a review of the literature. J Int oral Heal JIOH 2015;7(4):96-104.
  • 2. Graiff L, Piovan C, Vigolo P, Mason PN. Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements. J Prosthodont 2008;17(4):294–299.
  • 3. Şişmanoğlu S, Gürcan AT, Yıldırım-Bilmez Z, Turunç-Oğuzman R, Gümüştaş B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J Adv Prosthodont 2020;12(1):22–32.
  • 4. Yüksel M, Saygin AG, Bolayir G. Evaluation of the fracture resistance and failure types of different CAD‐CAM ceramic crowns supported by angled titanium abutments. J Prosthodont 2023;32(7):594–601.
  • 5. Chen H, Li T, Ng JPZ, Almeheni L, Li KY, Burrow MF. Clinical performance of zirconia-based tooth-supported fixed dental prostheses: a systematic review and meta-analysis. J Dent 2024;151:105382.
  • 6. Çelik G, Sarı T, Üşümez A. Bilgisayar destekli diş hekimliği ve güncel CAD/CAM sistemleri. Cumhuriyet Dent J 2013;16(1):74–82.
  • 7. Yuksel E, Zaimoglu A. Hızlı prototip üretim teknolojileri ve diş hekimliğinde kullanımı: olgu sunumu. Cumhuriyet Dent J 2011;14(3):225–229.
  • 8. Kimyai S, Oskoee SS, Mohammadi N, Rikhtegaran S, Bahari M, Oskoee PA, et al. Effect of different mechanical and chemical surface treatments on the repaired bond strength of an indirect composite resin. Lasers Med Sci 2015;30(2):653–659.
  • 9. Neis CA, Albuquerque NLG, Albuquerque I de S, Gomes EA, Souza-Filho CB de, Feitosa VP, et al. Surface treatments for repair of feldspathic, leucite-and lithium disilicate-reinforced glass ceramics using composite resin. Braz Dent J 2015;26(2):152–155.
  • 10. Filho AM, Vieira LCC, Araújo É, Monteiro Júnior S. Effect of different ceramic surface treatments on resin microtensile bond strength. J Prosthodont 2004;13(1):28–35.
  • 11. Al-Askary RA, Al-Ashou WMO, Hassoon SN. Repair Bond strength of composite resin to dental ceramic using various surface treatments: an in vitro study. J Int Soc Prev Community Dent 2024;14(5):388–395.
  • 12. Gul P, Altınok-Uygun L. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. J Adv Prosthodont 2020;12(3):131-139.
  • 13. Elsayad I. Cuspal movement and gap formation in premolars restored with preheated resin composite. Oper Dent 2009;34(6):725–731.
  • 14. Choudhary N, Kamat S, Mangala TM, Thomas M. Effect of pre-heating composite resin on gap formation at three different temperatures. J Conserv Dent Endod 2011;14(2):191–195.
  • 15. Daronch M, Rueggeberg FA, De Goes MF. Monomer conversion of pre-heated composite. J Dent Res 2005;84(7):663–667.
  • 16. Kim M, Lee J, Park C, Jo D, Yu B, Khalifah S Al, et al. Evaluation of shear bond strengths of 3D printed materials for permanent restorations with different surface treatments. Polymers (Basel) 2024;16(13):1838.
  • 17. Daronch M, Rueggeberg FA, Moss L, De Goes MF. Clinically relevant issues related to preheating composites. J Esthet Restor Dent 2006;18(6):340–350.
  • 18. Polat S, Tokar E, Asar NV, Kirmali O. Evaluation of efficacy of various surface conditioning methods on the repair bond strength of composite to different fracture types of zirconia ceramics. Scanning 2021;2021(1):5537761.
  • 19. Kimmich M, Stappert CFJ. Intraoral treatment of veneering porcelain chipping of fixed dental restorations: a review and clinical application. J Am Dent Assoc 2013;144(1):31–44.
  • 20. Valandro LF, Özcan M, Bottino MC, Bottino MA, Scotti R, Bona A Della. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: the effect of surface conditioning. J Adhes Dent 2006;8(3):175-181
  • 21. Cobb DS, Vargas MA, Fridrich TA, Bouschlicher MR. Metal surface treatment: characterization and effect on composite-to-metal bond strength. Oper Dent 2000;25(5):427–433.
  • 22. Randolph LD, Palin WM, Leprince JG. Composition of dental resin-based composites for direct restorations. In: Miletic V, editor. Dental composite materials for direct restorations. Cham: Springer; 2018. p. 11–24.
  • 23. El-Damanhoury HM, Haj-Ali RN, Platt JA. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Oper Dent 2015;40(2):201–210.
  • 24. Üstün Ö, Büyükhatipoğlu IK, Seçilmiş A. Shear bond strength of repair systems to new CAD/CAM restorative materials. J Prosthodont 2018;27(8):748–754.
  • 25. Raposo CC, Nery LMS, Carvalho EM, Ferreira PVC, Ardenghi DM, Bauer J, et al. Effect of preheating on the physicochemical properties and bond strength of composite resins utilized as dental cements: an in vitro study. J Prosthet Dent 2023;129(1):229-e1.
  • 26. Jain S, Parkash H, Gupta S, Bhargava A. To evaluate the effect of various surface treatments on the shear bond strength of three different intraoral ceramic repair systems: an in vitro study. J Indian Prosthodont Soc 2013;13(3):315–320.
  • 27. Özcan M. Evaluation of alternative intra‐oral repair techniques for fractured ceramic‐fused‐to‐metal restorations. J Oral Rehabil 2003;30(2):194–203.
  • 28. Yıldırım T, Gonulol N. CAD/CAM restorasyonların tamirinde uygulanan farklı yöntemlerin bağlanma dayanımına etkisi. J Turkish Dent Res 2024;3(1):294–307.
  • 29. Sadeghi M, Davari A, Mahani AA, Hakimi H. Influence of different power outputs of Er: YAG laser on shear bond strength of a resin composite to feldspathic porcelain. J Dent 2015;16(1):30-4.
  • 30. Kalra A, Mohan MS, Gowda EM. Comparison of shear bond strength of two porcelain repair systems after different surface treatment. Contemp Clin Dent 2015;6(2):196–200.
  • 31. Tomaselli L de O, Oliveira DCRS de, Favarão J, Silva AF da, Pires-de-Souza F de CP, Geraldeli S, et al. Influence of pre-heating regular resin composites and flowable composites on luting ceramic veneers with different thicknesses. Braz Dent J 2019;30:459–466.
  • 32. Elkaffass AA, Eltoukhy RI, Mahmoud SH. Influence of preheating on mechanical and surface properties of nanofilled resin composites. J Clin Exp Dent 2020;12(5):e494-e500.
  • 33. Lopes LCP, Terada RSS, Tsuzuki FM, Giannini M, Hirata R. Heating and preheating of dental restorative materials—a systematic review. Clin Oral Investig 2020;24(12):4225–4235.
  • 34. Schulte AG, Vöckler A, Reinhardt R. Longevity of ceramic inlays and onlays luted with a solely light-curing composite resin. J Dent 2005;33(5):433–442.
  • 35. Coelho NF, Barbon FJ, Machado RG, Boscato N, Moraes RR. Response of composite resins to preheating and the resulting strengthening of luted feldspar ceramic. Dent Mater 2019;35(10):1430–1438.
  • 36. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007;23(10):1283–1288.
  • 37. Lousan do Nascimento Poubel D, Ghanem Zanon AE, Franco Almeida JC, Vicente Melo de Lucas Rezende L, Pimentel Garcia FC. Composite resin preheating techniques for cementation of indirect restorations. Int J Biomater 2022;2022(1):5935668.
  • 38. Tauböck TT, Tarle Z, Marovic D, Attin T. Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. J Dent 2015;43(11):1358–1364.
  • 39. Grangeiro MTV, da Silva Rodrigues C, Rossi NR, Souza KB, de Melo RM, Bottino MA. Preheated composite as an alternative for bonding feldspathic and hybrid ceramics: a microshear bond strength study. J Adhes Dent 2023;25:b4279775.
  • 40. Kaisarly D, Gezawi M El. Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology 2016;104(3):257–270.
  • 41. May LG, Kelly JR, Bottino MA, Hill T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing. Dent Mater 2012;28(8):e99–e109.
  • 42. Shahin IG, Mohsen C, Katamish H. Effect of aging on the bond strength between lithium disilicate and preheated composite. Sys Rev Pharm. 2021;12(3):826–828.
  • 43. Patussi AFC, Ramacciato JC, da Silva JGR, Nascimento VRP, Campos DES, de Araújo Ferreira Munizz I, et al. Preheating of dental composite resins: a scoping review. J Esthet Restor Dent 2023;35(4):646–656.

ISIL İŞLEM GÖRMÜŞ KOMPOZİT REZİNLERİN FARKLI CAD/CAM SERAMİKLERE BAĞLANMA DAYANIMININ KARŞILAŞTIRILMASI

Year 2025, Volume: 28 Issue: 4, 594 - 599, 29.12.2025
https://doi.org/10.7126/cumudj.1807056

Abstract

Amaç: CAD/CAM seramik materyalinin tamirinde kullanılan kompozit rezinlere uygulanan ön ısıtma işleminin bağlantı dayanımının değerlendirilmesi amaçlandı.
Materyal-Metod: Feldspatik seramik (VITABlocs Mark II, VITA Zahnfabrik, Almanya), Hibrit seramik (Vita Enamic, VITA Zahnfabrik, Almanya), Zirkonya ile güçlendirilmiş lityum silikat seramik (Vita Suprinity, VITA Zahnfabrik, Almanya) CAD/CAM materyallerden hazırlanan örnekler, otopolimerizan akrilikle sabitlendi. Örnekler kompozitin rezinin sıcaklığına göre iki gruba ayrıldı (n=10). Yüzey işlemi olarak, %9 hidroflorik porselen asit (Ultradent Products, Inc., Köln, ALMANYA) seramik yüzeyine 20 sn uygulandı. Üretici firma talimatları doğrultusunda (60 sn. Monobond, 10 sn Heliobond) uygulandı. Farklı sıcaklıklardaki kompozit rezin (23±2 °C, 69 °C) yüzeylere silikon kalıplar yardımıyla (4 mm çap, 2 mm yükseklik) yerleştirildi ve polimerize edildi. Örneklerin bağlanma dayanımı, Universal test cihazında ölçüldü ve veriler SPSS 23.00 uygulamasıyla Two-way ANOVA ve Tukey testi kullanılarak analiz edildi
Bulgular: En yüksek bağlanma dayanımı değeri (60,58 MPa) GroupVS- RT grubunda görülürken, en düşük bağlanma dayanımı değeri (4,36 MPa) GrupVB-PHT grubunda elde edilmiştir. Gruplar arasında GrupVB ve GrupVE’de anlamlı farklılık görülmezken (p>0,05), GrupVS’de anlamlı farklılık bulunmuştur (p<0,05).
Çıkarım: Çalışmanın sınırları dahilinde; ısıl işlem uygulanan kompozit rezin, Vita Suprinity materyali için bağlanma dayanımını azalırken, Feldspatik ve Vita Enamic seramikler için arttırmıştır.

References

  • 1. Baroudi K, Ibraheem SN. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: a review of the literature. J Int oral Heal JIOH 2015;7(4):96-104.
  • 2. Graiff L, Piovan C, Vigolo P, Mason PN. Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements. J Prosthodont 2008;17(4):294–299.
  • 3. Şişmanoğlu S, Gürcan AT, Yıldırım-Bilmez Z, Turunç-Oğuzman R, Gümüştaş B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J Adv Prosthodont 2020;12(1):22–32.
  • 4. Yüksel M, Saygin AG, Bolayir G. Evaluation of the fracture resistance and failure types of different CAD‐CAM ceramic crowns supported by angled titanium abutments. J Prosthodont 2023;32(7):594–601.
  • 5. Chen H, Li T, Ng JPZ, Almeheni L, Li KY, Burrow MF. Clinical performance of zirconia-based tooth-supported fixed dental prostheses: a systematic review and meta-analysis. J Dent 2024;151:105382.
  • 6. Çelik G, Sarı T, Üşümez A. Bilgisayar destekli diş hekimliği ve güncel CAD/CAM sistemleri. Cumhuriyet Dent J 2013;16(1):74–82.
  • 7. Yuksel E, Zaimoglu A. Hızlı prototip üretim teknolojileri ve diş hekimliğinde kullanımı: olgu sunumu. Cumhuriyet Dent J 2011;14(3):225–229.
  • 8. Kimyai S, Oskoee SS, Mohammadi N, Rikhtegaran S, Bahari M, Oskoee PA, et al. Effect of different mechanical and chemical surface treatments on the repaired bond strength of an indirect composite resin. Lasers Med Sci 2015;30(2):653–659.
  • 9. Neis CA, Albuquerque NLG, Albuquerque I de S, Gomes EA, Souza-Filho CB de, Feitosa VP, et al. Surface treatments for repair of feldspathic, leucite-and lithium disilicate-reinforced glass ceramics using composite resin. Braz Dent J 2015;26(2):152–155.
  • 10. Filho AM, Vieira LCC, Araújo É, Monteiro Júnior S. Effect of different ceramic surface treatments on resin microtensile bond strength. J Prosthodont 2004;13(1):28–35.
  • 11. Al-Askary RA, Al-Ashou WMO, Hassoon SN. Repair Bond strength of composite resin to dental ceramic using various surface treatments: an in vitro study. J Int Soc Prev Community Dent 2024;14(5):388–395.
  • 12. Gul P, Altınok-Uygun L. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. J Adv Prosthodont 2020;12(3):131-139.
  • 13. Elsayad I. Cuspal movement and gap formation in premolars restored with preheated resin composite. Oper Dent 2009;34(6):725–731.
  • 14. Choudhary N, Kamat S, Mangala TM, Thomas M. Effect of pre-heating composite resin on gap formation at three different temperatures. J Conserv Dent Endod 2011;14(2):191–195.
  • 15. Daronch M, Rueggeberg FA, De Goes MF. Monomer conversion of pre-heated composite. J Dent Res 2005;84(7):663–667.
  • 16. Kim M, Lee J, Park C, Jo D, Yu B, Khalifah S Al, et al. Evaluation of shear bond strengths of 3D printed materials for permanent restorations with different surface treatments. Polymers (Basel) 2024;16(13):1838.
  • 17. Daronch M, Rueggeberg FA, Moss L, De Goes MF. Clinically relevant issues related to preheating composites. J Esthet Restor Dent 2006;18(6):340–350.
  • 18. Polat S, Tokar E, Asar NV, Kirmali O. Evaluation of efficacy of various surface conditioning methods on the repair bond strength of composite to different fracture types of zirconia ceramics. Scanning 2021;2021(1):5537761.
  • 19. Kimmich M, Stappert CFJ. Intraoral treatment of veneering porcelain chipping of fixed dental restorations: a review and clinical application. J Am Dent Assoc 2013;144(1):31–44.
  • 20. Valandro LF, Özcan M, Bottino MC, Bottino MA, Scotti R, Bona A Della. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: the effect of surface conditioning. J Adhes Dent 2006;8(3):175-181
  • 21. Cobb DS, Vargas MA, Fridrich TA, Bouschlicher MR. Metal surface treatment: characterization and effect on composite-to-metal bond strength. Oper Dent 2000;25(5):427–433.
  • 22. Randolph LD, Palin WM, Leprince JG. Composition of dental resin-based composites for direct restorations. In: Miletic V, editor. Dental composite materials for direct restorations. Cham: Springer; 2018. p. 11–24.
  • 23. El-Damanhoury HM, Haj-Ali RN, Platt JA. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Oper Dent 2015;40(2):201–210.
  • 24. Üstün Ö, Büyükhatipoğlu IK, Seçilmiş A. Shear bond strength of repair systems to new CAD/CAM restorative materials. J Prosthodont 2018;27(8):748–754.
  • 25. Raposo CC, Nery LMS, Carvalho EM, Ferreira PVC, Ardenghi DM, Bauer J, et al. Effect of preheating on the physicochemical properties and bond strength of composite resins utilized as dental cements: an in vitro study. J Prosthet Dent 2023;129(1):229-e1.
  • 26. Jain S, Parkash H, Gupta S, Bhargava A. To evaluate the effect of various surface treatments on the shear bond strength of three different intraoral ceramic repair systems: an in vitro study. J Indian Prosthodont Soc 2013;13(3):315–320.
  • 27. Özcan M. Evaluation of alternative intra‐oral repair techniques for fractured ceramic‐fused‐to‐metal restorations. J Oral Rehabil 2003;30(2):194–203.
  • 28. Yıldırım T, Gonulol N. CAD/CAM restorasyonların tamirinde uygulanan farklı yöntemlerin bağlanma dayanımına etkisi. J Turkish Dent Res 2024;3(1):294–307.
  • 29. Sadeghi M, Davari A, Mahani AA, Hakimi H. Influence of different power outputs of Er: YAG laser on shear bond strength of a resin composite to feldspathic porcelain. J Dent 2015;16(1):30-4.
  • 30. Kalra A, Mohan MS, Gowda EM. Comparison of shear bond strength of two porcelain repair systems after different surface treatment. Contemp Clin Dent 2015;6(2):196–200.
  • 31. Tomaselli L de O, Oliveira DCRS de, Favarão J, Silva AF da, Pires-de-Souza F de CP, Geraldeli S, et al. Influence of pre-heating regular resin composites and flowable composites on luting ceramic veneers with different thicknesses. Braz Dent J 2019;30:459–466.
  • 32. Elkaffass AA, Eltoukhy RI, Mahmoud SH. Influence of preheating on mechanical and surface properties of nanofilled resin composites. J Clin Exp Dent 2020;12(5):e494-e500.
  • 33. Lopes LCP, Terada RSS, Tsuzuki FM, Giannini M, Hirata R. Heating and preheating of dental restorative materials—a systematic review. Clin Oral Investig 2020;24(12):4225–4235.
  • 34. Schulte AG, Vöckler A, Reinhardt R. Longevity of ceramic inlays and onlays luted with a solely light-curing composite resin. J Dent 2005;33(5):433–442.
  • 35. Coelho NF, Barbon FJ, Machado RG, Boscato N, Moraes RR. Response of composite resins to preheating and the resulting strengthening of luted feldspar ceramic. Dent Mater 2019;35(10):1430–1438.
  • 36. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007;23(10):1283–1288.
  • 37. Lousan do Nascimento Poubel D, Ghanem Zanon AE, Franco Almeida JC, Vicente Melo de Lucas Rezende L, Pimentel Garcia FC. Composite resin preheating techniques for cementation of indirect restorations. Int J Biomater 2022;2022(1):5935668.
  • 38. Tauböck TT, Tarle Z, Marovic D, Attin T. Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. J Dent 2015;43(11):1358–1364.
  • 39. Grangeiro MTV, da Silva Rodrigues C, Rossi NR, Souza KB, de Melo RM, Bottino MA. Preheated composite as an alternative for bonding feldspathic and hybrid ceramics: a microshear bond strength study. J Adhes Dent 2023;25:b4279775.
  • 40. Kaisarly D, Gezawi M El. Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology 2016;104(3):257–270.
  • 41. May LG, Kelly JR, Bottino MA, Hill T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing. Dent Mater 2012;28(8):e99–e109.
  • 42. Shahin IG, Mohsen C, Katamish H. Effect of aging on the bond strength between lithium disilicate and preheated composite. Sys Rev Pharm. 2021;12(3):826–828.
  • 43. Patussi AFC, Ramacciato JC, da Silva JGR, Nascimento VRP, Campos DES, de Araújo Ferreira Munizz I, et al. Preheating of dental composite resins: a scoping review. J Esthet Restor Dent 2023;35(4):646–656.
There are 43 citations in total.

Details

Primary Language English
Subjects Prosthodontics
Journal Section Research Article
Authors

Oğuzhan Yılmaz 0000-0002-6414-3647

Ayşegül Göze Saygın 0000-0003-2826-5011

Submission Date October 21, 2025
Acceptance Date November 17, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

EndNote Yılmaz O, Göze Saygın A (December 1, 2025) Comparisons of the Bonding Strength of Heat-Treated Composite Resins to Different CAD/CAM Ceramics. Cumhuriyet Dental Journal 28 4 594–599.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.