Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 13 Sayı: 1, 145 - 161, 30.06.2021

Öz

Destekleyen Kurum

Mugla Sitki Kocman University Re- search Projects Coordination Office

Proje Numarası

Project Grant Number: 17/225 and

Teşekkür

This paper has been granted by the Mugla Sitki Kocman University Re- search Projects Coordination Office. Project Grant Number: 17/225 and title Basitleştirilmiş Manyetohidrodinamik (MHD) denklemlerinin sonlu elemanlar metoduyla çözümleri için gelişstirilen zaman rahatlatma modelleri.

Kaynakça

  • [1] Adams, N.A., Stolz, S., Deconvolution Methods for Subgrid-Scale Approximation in LES, Modern Simulation Strategies for Turbulent Flow, R.T. Edwards, 2001.
  • [2] Akbas, M., Mohebujjaman, M., Rebholz, L.G., Xiao, M., High order algebraic splitting for magnetohydrodynamics simulation, Journal of Computational and Applied Mathematics, 321(2017).
  • [3] Belenli, M.A., Kaya, S., Rebholz, L.G.,Wilson, N.E., A subgrid stabilization finite element method for incompressible magnetohydrodynamics, Int. J. Comp. Math., 90(7)(2013), 1506–1523.
  • [4] Breckling, S., Neda, M., Hill, T., A review of time relaxation methods, Fluids. 2 (2017), 40.
  • [5] Cibik, A., Eroglu, F.G., Kaya, S., Analysis of second order time filtered backward Euler method for MHD equations, J Sci Comput, 82(38)(2020).
  • [6] Davidson, P.A., An Introduction to Magnetohydrodynamics, Cambridge University Press, United Kingdom, 2001.
  • [7] Erkmen, D., Kaya, S., Cibik, A., A second order decoupled penalty projection method based on deferred correction for MHD in Elsasser variable, Journal of Computational and Applied Mathematics, 371(2020).
  • [8] Gunzburger, M.D., Meir, A.J., Peterson, J.S., On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comput., 56(194)(1991), 523–563.
  • [9] Isik, O.R., Spin up problem and accelerating convergence to steady state, Applied Mathematical Modelling, 37(2013), 3242–3253.
  • [10] Isik, O.R., Yuksel, G., Demir, B., Analysis of second order and unconditionally stable BDF2-AB2 method for the Navier-Stokes equations with nonlinear time relaxation, Num. Meth. Part. Di . Equa., 34(6)(2018), 2060–2078.
  • [11] Layton, W., Neda, M., Truncation of scales by time relaxation, Journal of Mathematical Analysis and Applications, 325(2007), 788–807.
  • [12] Layton, W., Introduction to the Numerical Analysis of Incompressible Viscous Flows, SIAM, Philadelphia, 2008.
  • [13] Layton, W., David Pruett, C., Rebholz, Leo G., Temporally regularized direct numerical simulation, Appl. Math. Comput., 216(2010), 3728– 3738.
  • [14] Layton, W., Rebholz, L., Approximate Deconvolution Models of Turbulence, Analysis, Phenomenology and Numerical Analysis, Springer, 2012.
  • [15] Layton, W., Tran, H., Trenchea, C., Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Meth. Part. D. E., 30(4)(2014), 1083–1102.
  • [16] Özbunar, M., Finite Element Solution of Navier-Stokes Time RelaxationModel Euler Time Discretization, M.Sc. Thesis, Grad. Sch. Nat. Appl. Sci., 2017.
  • [17] Pakzad, A., On the long time behavior of time relaxation model of fluids, arXiv:1903.12339.
  • [18] Peterson, J.S., On the finite element approximation of incompressible flows of an electrically conducting fluid, Numer. Meth. Part. D. E., 4(1)(1988), 57–68.
  • [19] Rosenau, P., Extending hydrodynamics via the regularization of the Chapman–Enskog expansion, Phys. Rev. A., 40(1989), 7193–7196.
  • [20] Schochet, S., Tadmor, E., The regularized Chapman–Enskog expansion for scalar conservation laws, Arch. Ration. Mech. Anal., 119(1992), 95–107.
  • [21] Stolz, S., Adams, N.A., Kleiser, L., The approximate deconvolution model for LES of compressible flows and its application to shock-turbulentboundary layer interaction, Phys. Fluids, 13(2001), 2985.
  • [22] Yuksel, G., Ingram, R., Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flow at small magnetic Reynolds number, Int. J. Num. Anal. Model., 10(1)(2013), 74–98.
  • [23] Yuksel, G., Isik, O.R., Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows, Appl. Math. Modell., 39(7)(2015), 1889–1898.

Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) with Linear Time Relaxation

Yıl 2021, Cilt: 13 Sayı: 1, 145 - 161, 30.06.2021

Öz

In this study, the solutions of Simplified Magnetohyrodynamics (SMHD) equations by finite element method are examined with linear time relaxation term. Therefore, the differential filter $\kappa(u-\bar{u})$ term is added to SMHD equations for numerical regularization and it is introduced SMHD Linear Time Relaxation Model (SMHDLTRM). The SMHDLTRM model is discretized by Backward-Euler (BE) method to obtain finite element solutions. The stability and convergency of the method is also conducted for SMHDLTRM. The present method is unconditionally stable and convergent with small time step condition. Additionally, the effectiveness of the method has presented with some numerical examples. The BE solutions of the SMHDLTRM are compared with the BE and the Crank-Nicolson (CN) solutions of the SMHD equations. This method can be applied to some problems when necessary more time steps to get accuracy or numerical solutions blow up for classical methods (BE or CN). All computations are conducted by using FreeFem++.

Proje Numarası

Project Grant Number: 17/225 and

Kaynakça

  • [1] Adams, N.A., Stolz, S., Deconvolution Methods for Subgrid-Scale Approximation in LES, Modern Simulation Strategies for Turbulent Flow, R.T. Edwards, 2001.
  • [2] Akbas, M., Mohebujjaman, M., Rebholz, L.G., Xiao, M., High order algebraic splitting for magnetohydrodynamics simulation, Journal of Computational and Applied Mathematics, 321(2017).
  • [3] Belenli, M.A., Kaya, S., Rebholz, L.G.,Wilson, N.E., A subgrid stabilization finite element method for incompressible magnetohydrodynamics, Int. J. Comp. Math., 90(7)(2013), 1506–1523.
  • [4] Breckling, S., Neda, M., Hill, T., A review of time relaxation methods, Fluids. 2 (2017), 40.
  • [5] Cibik, A., Eroglu, F.G., Kaya, S., Analysis of second order time filtered backward Euler method for MHD equations, J Sci Comput, 82(38)(2020).
  • [6] Davidson, P.A., An Introduction to Magnetohydrodynamics, Cambridge University Press, United Kingdom, 2001.
  • [7] Erkmen, D., Kaya, S., Cibik, A., A second order decoupled penalty projection method based on deferred correction for MHD in Elsasser variable, Journal of Computational and Applied Mathematics, 371(2020).
  • [8] Gunzburger, M.D., Meir, A.J., Peterson, J.S., On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comput., 56(194)(1991), 523–563.
  • [9] Isik, O.R., Spin up problem and accelerating convergence to steady state, Applied Mathematical Modelling, 37(2013), 3242–3253.
  • [10] Isik, O.R., Yuksel, G., Demir, B., Analysis of second order and unconditionally stable BDF2-AB2 method for the Navier-Stokes equations with nonlinear time relaxation, Num. Meth. Part. Di . Equa., 34(6)(2018), 2060–2078.
  • [11] Layton, W., Neda, M., Truncation of scales by time relaxation, Journal of Mathematical Analysis and Applications, 325(2007), 788–807.
  • [12] Layton, W., Introduction to the Numerical Analysis of Incompressible Viscous Flows, SIAM, Philadelphia, 2008.
  • [13] Layton, W., David Pruett, C., Rebholz, Leo G., Temporally regularized direct numerical simulation, Appl. Math. Comput., 216(2010), 3728– 3738.
  • [14] Layton, W., Rebholz, L., Approximate Deconvolution Models of Turbulence, Analysis, Phenomenology and Numerical Analysis, Springer, 2012.
  • [15] Layton, W., Tran, H., Trenchea, C., Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Meth. Part. D. E., 30(4)(2014), 1083–1102.
  • [16] Özbunar, M., Finite Element Solution of Navier-Stokes Time RelaxationModel Euler Time Discretization, M.Sc. Thesis, Grad. Sch. Nat. Appl. Sci., 2017.
  • [17] Pakzad, A., On the long time behavior of time relaxation model of fluids, arXiv:1903.12339.
  • [18] Peterson, J.S., On the finite element approximation of incompressible flows of an electrically conducting fluid, Numer. Meth. Part. D. E., 4(1)(1988), 57–68.
  • [19] Rosenau, P., Extending hydrodynamics via the regularization of the Chapman–Enskog expansion, Phys. Rev. A., 40(1989), 7193–7196.
  • [20] Schochet, S., Tadmor, E., The regularized Chapman–Enskog expansion for scalar conservation laws, Arch. Ration. Mech. Anal., 119(1992), 95–107.
  • [21] Stolz, S., Adams, N.A., Kleiser, L., The approximate deconvolution model for LES of compressible flows and its application to shock-turbulentboundary layer interaction, Phys. Fluids, 13(2001), 2985.
  • [22] Yuksel, G., Ingram, R., Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flow at small magnetic Reynolds number, Int. J. Num. Anal. Model., 10(1)(2013), 74–98.
  • [23] Yuksel, G., Isik, O.R., Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows, Appl. Math. Modell., 39(7)(2015), 1889–1898.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Gamze Yüksel 0000-0003-3578-2762

Mustafa Hicret Yaman 0000-0001-6483-0140

Proje Numarası Project Grant Number: 17/225 and
Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 13 Sayı: 1

Kaynak Göster

APA Yüksel, G., & Yaman, M. H. (2021). Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) with Linear Time Relaxation. Turkish Journal of Mathematics and Computer Science, 13(1), 145-161. https://doi.org/10.47000/tjmcs.757462
AMA Yüksel G, Yaman MH. Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) with Linear Time Relaxation. TJMCS. Haziran 2021;13(1):145-161. doi:10.47000/tjmcs.757462
Chicago Yüksel, Gamze, ve Mustafa Hicret Yaman. “Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) With Linear Time Relaxation”. Turkish Journal of Mathematics and Computer Science 13, sy. 1 (Haziran 2021): 145-61. https://doi.org/10.47000/tjmcs.757462.
EndNote Yüksel G, Yaman MH (01 Haziran 2021) Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) with Linear Time Relaxation. Turkish Journal of Mathematics and Computer Science 13 1 145–161.
IEEE G. Yüksel ve M. H. Yaman, “Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) with Linear Time Relaxation”, TJMCS, c. 13, sy. 1, ss. 145–161, 2021, doi: 10.47000/tjmcs.757462.
ISNAD Yüksel, Gamze - Yaman, Mustafa Hicret. “Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) With Linear Time Relaxation”. Turkish Journal of Mathematics and Computer Science 13/1 (Haziran 2021), 145-161. https://doi.org/10.47000/tjmcs.757462.
JAMA Yüksel G, Yaman MH. Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) with Linear Time Relaxation. TJMCS. 2021;13:145–161.
MLA Yüksel, Gamze ve Mustafa Hicret Yaman. “Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) With Linear Time Relaxation”. Turkish Journal of Mathematics and Computer Science, c. 13, sy. 1, 2021, ss. 145-61, doi:10.47000/tjmcs.757462.
Vancouver Yüksel G, Yaman MH. Numerical Analysis of Backward-Euler Method for Simplified MagnetoHydroDynamics (SMHD) with Linear Time Relaxation. TJMCS. 2021;13(1):145-61.