Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production

Yıl 2017, Cilt: 32 Sayı: 3, 309 - 315, 15.10.2017
https://doi.org/10.7161/omuanajas.343723

Öz

Mikroalgler,
geleceğin yenilenebilir enerji kaynaklarından görülmelerine rağmen, günümüzde
büyük ölçekli üretimleri oldukça pahalı bir süreçtir. Mikroalgler tarımsal
kaynaklı atık sularda yer alan kimyasalları ve ağır metalleri besin kaynağı
olarak kullanarak üremelerini devam ettirebilirler. Tarımsal atık sulardan
önemli bir tanesi de peynir altı suyudur. Peynir atık suyu içerdiği yoğun
protein nedeniyle mikroalg yetiştirilmesi için uygun bir besin kaynağı olarak
da kullanılabilir. Bu çalışmada, 500 ml’lik 4 farklı yetiştirme ortamı
hazırlanarak 1)Mavi yeşil alg ortamı (BG11) Chlorella vulgaris 2) Mavi yeşil
alg ortamı (BG11) Peynir altısuyu (CW) Chlorella vulgaris 3) Bold’s Basal
ortamı (BMM) Chlorella vulgaris and 4)Çeşme suyu (TW) Chlorella vulgaris
ortamlarında üretilmeye çalışılmıştır. 21 gün süren denemeler sonucunda en
yüksek, hücre sayısı, biyomas ve oransal yağ miktarı artışı Bold’s Basal
ortamı  Peynir altısuyu ve Chlorella
vulgaris ortamında sırasıyla  79.7x106
cell mL-1 , 10.14 g L-1 ve %20.7 olarak gerçekleşmiştir. Yapılan denemelerde
peynir altı suyunun Chlorella vulgaris üretiminde besin kaynağı olarak
kullanılabileceği sonucuna ulaşılmıştır. Sonuçlar istatistiksel analizlerle de
desteklenmiştir

Kaynakça

  • Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), doi:10.1016/j.sjbs.2012.04.005.
  • Acien, F.G., Fernandez, J.M., Magan, J.J., Molina, E. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344-1353. doi:10.1016/j.biotechadv.2012.02.005.
  • Acien, F.G., Gomez-Serrano, C., Morales-Amaral, M.M., Fernandez-Sevilla, J.M., Molina-Grima, E. 2016. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7.
  • Adamczyk, M., Lasek, J., Skawinska, A. 2016. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology, 179 (7), 1248-1261. doi:10.1007/s12010-016-2062-3.
  • Amaro, H.M., Macedo, A.C., Malcata, F.X. 2012. Microalgae: An alternative as sustainable source of biofuels? Energy, 44(1), 158-166.
  • Aravinthan, V., Story, N., Yusaf, T. 2014. Nutrient removal of nursery and municipal wastewater using Chlorella vulgaris microalgae for lipid extraction. Desalination and Water Treatment, 52(4-6), 727-736.
  • Cai, T., Park, S.Y., Li, Y.B. 2013. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews, 19, 360-369. doi:10.1016/j.rser.2012.11.030.
  • Giovanardi, M., Baldisserotto, C., Daglia, M., Ferroni, L., Sabia, A., Pancaldi, S. 2016. Morpho-physiological aspects of Scenedesmus acutus PVUW12 cultivated with a dairy industry waste and after starvation. Plant Biosystems, 150(4), 767-775.doi:10.1080/11263504.2014.991361.
  • Girard, J.M., Roy, M.L., Ben Hafsa, M., Gagnon, J., Faucheux, N., Heitz, M., Deschenes, J.S. 2014. Mixotrophic cultivation of green microalgae Scenedesmus obliquus on wheypermeate for biodiesel production. Algal Research-Biomass Biofuels and Bioproducts, 5, 241-248. doi:10.1016/j.algal.2014.03.002.
  • Glemser, M., Heining, M., Schmidt, J., Becker, A., Garbe, D., Buchholz, R., Bruck, T. 2016. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 100(3), 1077-1088. doi:10.1007/s00253-015-7144-6.
  • Gupta, P.L., Lee, S.M., Choi, H.J. 2015. A mini review: photobioreactors for large scale algal cultivation. World Journal of Microbiology & Biotechnology, 31(9), 1409-1417. doi:10.1007/s11274-015-1892-4.
  • Hodaifa, G., Sanchez, S., Martinez, M.E., Orpez, R. 2013. Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium. Applied Energy, 104, 345-352. doi:10.1016/j.apenergy.2012.11.005.
  • Hwang, J.H., Church, J., Lee, S.J., Park, J., Lee, W.H. 2016. Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11), 882-897. doi:10.1089/ees.2016.0132.
  • Ismail, D. 2016. Utilization Of Chlorella Vulgaris To Fixate A High Concentration Of Carbon Dioxide In A Compost-Based Medium. International Journal of Technology, 7(1), 168-175.
  • Kang, Z., Kim, B.H., Ramanan, R., Choi, J.E., Yang, J.W., Oh, H.M., Kim, H.S. 2015. A Cost Analysis of Microalgal Biomass and Biodiesel Production in Open Raceways Treating Municipal Wastewater and under Optimum Light Wavelength. Journal of Microbiology and Biotechnology, 25(1), 109-118. doi:10.4014/jmb.1409.09019.
  • Koc, C. 2015. Comparing Growth Phase of Three Microalgae Species under Different Illumination Sources in a Photo-Bioreactor (Pbr). Fresenius Environmental Bulletin, 24(12a), 4435-4445.
  • Koc, C., Anderson, G. A., Kommareddy, A. 2013. Use of Red and Blue Light-Emitting Diodes (LED) and Fluorescent Lamps to Grow Microalgae in a Photobioreactor. Israeli Journal of Aquaculture-Bamidgeh, 65.
  • Krustok, I., Odlare, M., Shabiimam, M.A., Truu, J., Truu, M., Ligi, T., Nehrenheim, E. 2015. Characterization of algal and microbial community growth in a wastewater treating batch photo-bioreactor inoculated with lake water. Algal Research-Biomass Biofuels and Bioproducts, 11, 421-427. doi:10.1016/j.algal.2015.02.005.
  • Lee, C.G., Palsson, B.O. 1995. Light-Emitting Diode-Based Algal Photobioreactor with External Gas-Exchange. Journal of Fermentation and Bioengineering, 79(3), 257-263. doi:Doi 10.1016/0922-338x(95)90613-5.
  • Lee, E., Pruvost, J., He, X., Munipalli, R., Pilon, L. 2014. Design tool and guidelines for outdoor photobioreactors. Chemical Engineering Science, 106, 18-29. doi:10.1016/j.ces.2013.11.014.
  • Lu, W.D., Wang, Z.M., Wang, X.W., Yuan, Z.H. 2015. Cultivation of Chlorella sp using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192, 382-388. doi:10.1016/j.biortech.2015.05.094.
  • Mehrabadi, A., Craggs, R., Farid, M.M. 2016. Biodiesel production potential of wastewater treatment high rate algal pond biomass. Bioresource Technology, 221, 222-233. doi:10.1016/j.biortech.2016.09.028.
  • Nwoba, E.G., Ayre, J.M., Moheimani, N.R., Ubi, B.E., Ogbonna, J. C. 2016. Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Research-Biomass Biofuels and Bioproducts, 17, 268-276. doi:10.1016/j.algal.2016.05.022.
  • Olivieri, G., Marzocchella, A., Andreozzi, R., Pinto, G., Pollio, A. 2011. Biodiesel production from Stichococcus strains at laboratory scale. Journal of Chemical Technology and Biotechnology, 86(6), 776-783. doi:10.1002/jctb.2586.
  • Olivieri, G., Russo, M.E., Giardina, P., Marzocchella, A., Sannia, G., Salatino, P. 2012. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus. Journal of Industrial Microbiology & Biotechnology, 39(5), 719-729. do.i:10.1007/s10295-011-1072-y.
  • Olkiewicz, M., Torres, C.M., Jimenez, L., Font, J., Bengoa, C. 2016. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge. Bioresource Technology, 214, 122-131. doi:10.1016/j.biortech.2016.04.098.
  • Oncel, S.S. 2013. Microalgae for a macroenergy world. Renewable & Sustainable Energy Reviews, 26, 241-264. doi:10.1016/j.rser.2013.05.059.
  • Panoutsou, C., Bauen, A., Bottcher, H., Alexopoulou, E., Fritsche, U., Uslu, A., Maniatis, K. 2013. Biomass Futures: an integrated approach for estimating the future contribution of biomass value chains to the European energy system and inform future policy formation. Biofuels Bioproducts & Biorefining-Biofpr, 7(2), 106-114. doi:10.1002/bbb.1367.
  • Parupudi, P., Kethineni, C., Dhamole, P. B., Vemula, S., Allu, P. R., Botlagunta, M., Ronda, S. R. 2016. CO2 fixation and lipid production by microalgal species. Korean Journal of Chemical Engineering, 33(2), 587-593. doi:10.1007/s11814-015-0152-5.
  • Raes, E.J., Isdepsky, A., Muylaert, K., Borowitzka, M.A., Moheimani, N.R. 2014. Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. Journal of Applied Phycology, 26(1), 247-255. doi:10.1007/s10811-013-0077-5.
  • Richmond, A., 2004. Handbook on Microalgal Culture: Biotechnology and Applied Phycology. 23, 37, 125-172. Iowa State Press, Iowa: Blackwell Publishing
  • Schulze, P.S.C., Pereira, H.G.C., Santos, T.F.C., Schueler, L., Guerra, R., Barreira, L.A., Varela, J.C.S. 2016. Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Research, 16, 387-398. doi:http://dx.doi.org/10.1016/j.algal.2016.03.034.
  • Singh, N.K., Dhar, D.W. 2011. Microalgae as second generation biofuel. A review. Agronomy for Sustainable Development, 31(4), 605-629. doi:10.1007/s13593-011-0018-0.
  • Slade, R., Bauen, A. 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass & Bioenergy, 53, 29-38. doi:10.1016/j.biombioe.2012.12.019.
  • Tsolcha, O.N., Tekerlekopoulou, A.G., Akratos, C.S., Bellou, S., Aggelis, G., Katsiapi, M., Vayenas, D.V. 2016. Treatment of second wheyeffluents using a Choricystis-based system with simultaneous lipid production. Journal of Chemical Technology and Biotechnology, 91(8), 2349-2359. doi:10.1002/jctb.4829.
  • Tu, Q. S., Lu, M.M., Thiansathit, W., Keener, T.C. 2016. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process. Water Environment Research, 88(1), 21-28. doi:10.2175/106143015x14362865227517.
  • Vaiciulyte, S., Padovani, G., Kostkeviciene, J., Carlozzi, P. 2014. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity. Energies, 7(6), 3840-3857. doi:10.3390/en7063840.
  • Wang, L.A., Min, M., Li, Y.C., Chen, P., Chen, Y.F., Liu, Y. H., Ruan, R. 2010. Cultivation of Green Algae Chlorella sp in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186. doi:10.1007/s12010-009-8866-7.
  • Wu, Y.H., Hu, H.Y., Yu, Y., Zhang, T. Y., Zhu, S. F., Zhuang, L. L., Lu, Y. 2014. Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. Renewable & Sustainable Energy Reviews, 33, 675-688. doi:10.1016/j.rser.2014.02.026.
  • Yeh, K. L., Chang, J. S. 2012. Effects of cultivation conditions and medium composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120-127. doi:10.1016/j.biortech.2011.11.103.
  • Zeng, X.H., Danquah, M. K., Zheng, C., Potumarthi, R., Chen, X. D., Lu, Y. H. 2012. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 187, 185-192. doi:10.1016/j.cej.2012.01.119.
  • Zheng, J., Li, Z.B., Lu, Y.H., Tang, X.M., Lu, B., Li, Y.Y., Zhou, J. X. 2011. Cultivation of the microalga, Chlorella pyrenoidosa, in biogas wastewater. African Journal of Biotechnology, 10(61), 13115-13120.
  • Zhu, L.D., Li, Z.H., Hiltunen, E. 2016. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. Biomed Research International. doi:Artn 8792548 10.1155/2016/8792548.

Çeşitli yetiştirme ortamlarında ek besin olarak kullanılan peynir altı suyunun biyodizel hammaddesi Chlorella vulgaris’in üretim potansiyeline etkisinin belirlenmesi

Yıl 2017, Cilt: 32 Sayı: 3, 309 - 315, 15.10.2017
https://doi.org/10.7161/omuanajas.343723

Öz

Large-scale production of microalgae is a costly process because of high
costs of microalgae feed, artificial lighting and operational costs.  Whey (CW) is one of the agricultural waste
materials which contains high amounts of protein and minerals and is considered
as a feed source for Chlorella vulgaris. The objective of this research was to
determine the effects of wheyon biomass production of Chlorella vulgaris.
Chlorella vulgaris was produced in four different growth medium of 1) Blue
Green Medium(BG11) Chlorella vulgaris 2) Blue Green Medium(BG11) whey (CW)
Chlorella vulgaris 3) Bold’s Basal Medium (BMM) Chlorella vulgaris and 4) Tap water(TW)
Chlorella vulgaris. After 21 days of experimentation, the highest number
microalgae cells, biomass gain and lipid were observed in Bold's Basal Medium
(BMM) Chlorella vulgaris growth medium containing as 79.7x106 cell mL-1, 10.14
g L-1 and 20.7%, respectively. It is found that wheycan be considered as a
promising feed source for the production of Chlorella vulgaris.

Kaynakça

  • Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), doi:10.1016/j.sjbs.2012.04.005.
  • Acien, F.G., Fernandez, J.M., Magan, J.J., Molina, E. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344-1353. doi:10.1016/j.biotechadv.2012.02.005.
  • Acien, F.G., Gomez-Serrano, C., Morales-Amaral, M.M., Fernandez-Sevilla, J.M., Molina-Grima, E. 2016. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7.
  • Adamczyk, M., Lasek, J., Skawinska, A. 2016. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology, 179 (7), 1248-1261. doi:10.1007/s12010-016-2062-3.
  • Amaro, H.M., Macedo, A.C., Malcata, F.X. 2012. Microalgae: An alternative as sustainable source of biofuels? Energy, 44(1), 158-166.
  • Aravinthan, V., Story, N., Yusaf, T. 2014. Nutrient removal of nursery and municipal wastewater using Chlorella vulgaris microalgae for lipid extraction. Desalination and Water Treatment, 52(4-6), 727-736.
  • Cai, T., Park, S.Y., Li, Y.B. 2013. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews, 19, 360-369. doi:10.1016/j.rser.2012.11.030.
  • Giovanardi, M., Baldisserotto, C., Daglia, M., Ferroni, L., Sabia, A., Pancaldi, S. 2016. Morpho-physiological aspects of Scenedesmus acutus PVUW12 cultivated with a dairy industry waste and after starvation. Plant Biosystems, 150(4), 767-775.doi:10.1080/11263504.2014.991361.
  • Girard, J.M., Roy, M.L., Ben Hafsa, M., Gagnon, J., Faucheux, N., Heitz, M., Deschenes, J.S. 2014. Mixotrophic cultivation of green microalgae Scenedesmus obliquus on wheypermeate for biodiesel production. Algal Research-Biomass Biofuels and Bioproducts, 5, 241-248. doi:10.1016/j.algal.2014.03.002.
  • Glemser, M., Heining, M., Schmidt, J., Becker, A., Garbe, D., Buchholz, R., Bruck, T. 2016. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 100(3), 1077-1088. doi:10.1007/s00253-015-7144-6.
  • Gupta, P.L., Lee, S.M., Choi, H.J. 2015. A mini review: photobioreactors for large scale algal cultivation. World Journal of Microbiology & Biotechnology, 31(9), 1409-1417. doi:10.1007/s11274-015-1892-4.
  • Hodaifa, G., Sanchez, S., Martinez, M.E., Orpez, R. 2013. Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium. Applied Energy, 104, 345-352. doi:10.1016/j.apenergy.2012.11.005.
  • Hwang, J.H., Church, J., Lee, S.J., Park, J., Lee, W.H. 2016. Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11), 882-897. doi:10.1089/ees.2016.0132.
  • Ismail, D. 2016. Utilization Of Chlorella Vulgaris To Fixate A High Concentration Of Carbon Dioxide In A Compost-Based Medium. International Journal of Technology, 7(1), 168-175.
  • Kang, Z., Kim, B.H., Ramanan, R., Choi, J.E., Yang, J.W., Oh, H.M., Kim, H.S. 2015. A Cost Analysis of Microalgal Biomass and Biodiesel Production in Open Raceways Treating Municipal Wastewater and under Optimum Light Wavelength. Journal of Microbiology and Biotechnology, 25(1), 109-118. doi:10.4014/jmb.1409.09019.
  • Koc, C. 2015. Comparing Growth Phase of Three Microalgae Species under Different Illumination Sources in a Photo-Bioreactor (Pbr). Fresenius Environmental Bulletin, 24(12a), 4435-4445.
  • Koc, C., Anderson, G. A., Kommareddy, A. 2013. Use of Red and Blue Light-Emitting Diodes (LED) and Fluorescent Lamps to Grow Microalgae in a Photobioreactor. Israeli Journal of Aquaculture-Bamidgeh, 65.
  • Krustok, I., Odlare, M., Shabiimam, M.A., Truu, J., Truu, M., Ligi, T., Nehrenheim, E. 2015. Characterization of algal and microbial community growth in a wastewater treating batch photo-bioreactor inoculated with lake water. Algal Research-Biomass Biofuels and Bioproducts, 11, 421-427. doi:10.1016/j.algal.2015.02.005.
  • Lee, C.G., Palsson, B.O. 1995. Light-Emitting Diode-Based Algal Photobioreactor with External Gas-Exchange. Journal of Fermentation and Bioengineering, 79(3), 257-263. doi:Doi 10.1016/0922-338x(95)90613-5.
  • Lee, E., Pruvost, J., He, X., Munipalli, R., Pilon, L. 2014. Design tool and guidelines for outdoor photobioreactors. Chemical Engineering Science, 106, 18-29. doi:10.1016/j.ces.2013.11.014.
  • Lu, W.D., Wang, Z.M., Wang, X.W., Yuan, Z.H. 2015. Cultivation of Chlorella sp using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192, 382-388. doi:10.1016/j.biortech.2015.05.094.
  • Mehrabadi, A., Craggs, R., Farid, M.M. 2016. Biodiesel production potential of wastewater treatment high rate algal pond biomass. Bioresource Technology, 221, 222-233. doi:10.1016/j.biortech.2016.09.028.
  • Nwoba, E.G., Ayre, J.M., Moheimani, N.R., Ubi, B.E., Ogbonna, J. C. 2016. Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Research-Biomass Biofuels and Bioproducts, 17, 268-276. doi:10.1016/j.algal.2016.05.022.
  • Olivieri, G., Marzocchella, A., Andreozzi, R., Pinto, G., Pollio, A. 2011. Biodiesel production from Stichococcus strains at laboratory scale. Journal of Chemical Technology and Biotechnology, 86(6), 776-783. doi:10.1002/jctb.2586.
  • Olivieri, G., Russo, M.E., Giardina, P., Marzocchella, A., Sannia, G., Salatino, P. 2012. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus. Journal of Industrial Microbiology & Biotechnology, 39(5), 719-729. do.i:10.1007/s10295-011-1072-y.
  • Olkiewicz, M., Torres, C.M., Jimenez, L., Font, J., Bengoa, C. 2016. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge. Bioresource Technology, 214, 122-131. doi:10.1016/j.biortech.2016.04.098.
  • Oncel, S.S. 2013. Microalgae for a macroenergy world. Renewable & Sustainable Energy Reviews, 26, 241-264. doi:10.1016/j.rser.2013.05.059.
  • Panoutsou, C., Bauen, A., Bottcher, H., Alexopoulou, E., Fritsche, U., Uslu, A., Maniatis, K. 2013. Biomass Futures: an integrated approach for estimating the future contribution of biomass value chains to the European energy system and inform future policy formation. Biofuels Bioproducts & Biorefining-Biofpr, 7(2), 106-114. doi:10.1002/bbb.1367.
  • Parupudi, P., Kethineni, C., Dhamole, P. B., Vemula, S., Allu, P. R., Botlagunta, M., Ronda, S. R. 2016. CO2 fixation and lipid production by microalgal species. Korean Journal of Chemical Engineering, 33(2), 587-593. doi:10.1007/s11814-015-0152-5.
  • Raes, E.J., Isdepsky, A., Muylaert, K., Borowitzka, M.A., Moheimani, N.R. 2014. Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. Journal of Applied Phycology, 26(1), 247-255. doi:10.1007/s10811-013-0077-5.
  • Richmond, A., 2004. Handbook on Microalgal Culture: Biotechnology and Applied Phycology. 23, 37, 125-172. Iowa State Press, Iowa: Blackwell Publishing
  • Schulze, P.S.C., Pereira, H.G.C., Santos, T.F.C., Schueler, L., Guerra, R., Barreira, L.A., Varela, J.C.S. 2016. Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Research, 16, 387-398. doi:http://dx.doi.org/10.1016/j.algal.2016.03.034.
  • Singh, N.K., Dhar, D.W. 2011. Microalgae as second generation biofuel. A review. Agronomy for Sustainable Development, 31(4), 605-629. doi:10.1007/s13593-011-0018-0.
  • Slade, R., Bauen, A. 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass & Bioenergy, 53, 29-38. doi:10.1016/j.biombioe.2012.12.019.
  • Tsolcha, O.N., Tekerlekopoulou, A.G., Akratos, C.S., Bellou, S., Aggelis, G., Katsiapi, M., Vayenas, D.V. 2016. Treatment of second wheyeffluents using a Choricystis-based system with simultaneous lipid production. Journal of Chemical Technology and Biotechnology, 91(8), 2349-2359. doi:10.1002/jctb.4829.
  • Tu, Q. S., Lu, M.M., Thiansathit, W., Keener, T.C. 2016. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process. Water Environment Research, 88(1), 21-28. doi:10.2175/106143015x14362865227517.
  • Vaiciulyte, S., Padovani, G., Kostkeviciene, J., Carlozzi, P. 2014. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity. Energies, 7(6), 3840-3857. doi:10.3390/en7063840.
  • Wang, L.A., Min, M., Li, Y.C., Chen, P., Chen, Y.F., Liu, Y. H., Ruan, R. 2010. Cultivation of Green Algae Chlorella sp in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186. doi:10.1007/s12010-009-8866-7.
  • Wu, Y.H., Hu, H.Y., Yu, Y., Zhang, T. Y., Zhu, S. F., Zhuang, L. L., Lu, Y. 2014. Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. Renewable & Sustainable Energy Reviews, 33, 675-688. doi:10.1016/j.rser.2014.02.026.
  • Yeh, K. L., Chang, J. S. 2012. Effects of cultivation conditions and medium composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120-127. doi:10.1016/j.biortech.2011.11.103.
  • Zeng, X.H., Danquah, M. K., Zheng, C., Potumarthi, R., Chen, X. D., Lu, Y. H. 2012. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 187, 185-192. doi:10.1016/j.cej.2012.01.119.
  • Zheng, J., Li, Z.B., Lu, Y.H., Tang, X.M., Lu, B., Li, Y.Y., Zhou, J. X. 2011. Cultivation of the microalga, Chlorella pyrenoidosa, in biogas wastewater. African Journal of Biotechnology, 10(61), 13115-13120.
  • Zhu, L.D., Li, Z.H., Hiltunen, E. 2016. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. Biomed Research International. doi:Artn 8792548 10.1155/2016/8792548.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Bölüm Tarım Makineleri
Yazarlar

Caner Koç

Hüseyin Duran

Yayımlanma Tarihi 15 Ekim 2017
Kabul Tarihi 15 Mayıs 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 3

Kaynak Göster

APA Koç, C., & Duran, H. (2017). Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production. Anadolu Tarım Bilimleri Dergisi, 32(3), 309-315. https://doi.org/10.7161/omuanajas.343723
AMA Koç C, Duran H. Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production. ANAJAS. Ekim 2017;32(3):309-315. doi:10.7161/omuanajas.343723
Chicago Koç, Caner, ve Hüseyin Duran. “Determination of the Effect of Whey As a Nutritional Supplement in Different Growth Medium Regarding to Its Potential to Biodiesel Feedstock Production”. Anadolu Tarım Bilimleri Dergisi 32, sy. 3 (Ekim 2017): 309-15. https://doi.org/10.7161/omuanajas.343723.
EndNote Koç C, Duran H (01 Ekim 2017) Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production. Anadolu Tarım Bilimleri Dergisi 32 3 309–315.
IEEE C. Koç ve H. Duran, “Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production”, ANAJAS, c. 32, sy. 3, ss. 309–315, 2017, doi: 10.7161/omuanajas.343723.
ISNAD Koç, Caner - Duran, Hüseyin. “Determination of the Effect of Whey As a Nutritional Supplement in Different Growth Medium Regarding to Its Potential to Biodiesel Feedstock Production”. Anadolu Tarım Bilimleri Dergisi 32/3 (Ekim 2017), 309-315. https://doi.org/10.7161/omuanajas.343723.
JAMA Koç C, Duran H. Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production. ANAJAS. 2017;32:309–315.
MLA Koç, Caner ve Hüseyin Duran. “Determination of the Effect of Whey As a Nutritional Supplement in Different Growth Medium Regarding to Its Potential to Biodiesel Feedstock Production”. Anadolu Tarım Bilimleri Dergisi, c. 32, sy. 3, 2017, ss. 309-15, doi:10.7161/omuanajas.343723.
Vancouver Koç C, Duran H. Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production. ANAJAS. 2017;32(3):309-15.
Online ISSN: 1308-8769