Research Article
BibTex RIS Cite
Year 2022, Volume: 25 Issue: Supplement, 1 - 6, 25.03.2022
https://doi.org/10.7126/cumudj.1035066

Abstract

References

  • 1. Marro A, Bandukwala T, Mak W. Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Curr Probl Diagn Radiol. 2016;45:2-9.
  • 2. Sun Z. 3D printing in medicine: current applications and future directions. Quant Imaging Med Surg. 2018;8:1069-77.
  • 3. Marchetti C, Bianchi A, Bassi M, Gori R,Lamberti C, Sarti A. Mathematical modeling and numerical simulation in maxillo-facial virtual surgery (VISU). J Craniofac Surg 2006;17:661-7.
  • 4. Varga E Jr, Hammer B, Hardy BM, Kamer L. The accuracy of three-dimensional model generation. What makes it accurate to be used for surgical planning? Int J Oral Maxillofac Surg. 2013;42:1159-66.
  • 5. Meglioli M, Naveau A, Macaluso GM, Catros S. 3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review. 3D Print Med. 2020;20;6(1):30.
  • 6. Tanveer W, Ridwan-Pramana A, Molinero-Mourelle P, Foroyzanfar T. Systematic Review of Clinical Applications of CAD/Cam Technology for Craniofacial Implants Placement and Manufacturing of Orbital Prostheses. INT J Environ Res Public Health. 2021;28;18(21):11349
  • 7. Weiss R 2nd, Read-Fuller A. Cone Beam Computed Tomography in Oral and Maxillofacial Surgery: An Evidence-Based Review. Dent J (Basel). 2019;2;7(2):52.
  • 8. Ahmad M, Jenny J, Downie M. Application of cone beam computed tomography in oral and maxillofacial surgery. Aust Dent J. 2012;57 Suppl 1:82-94.
  • 9. Wolff C, Mücke T, Wagenpfeil S, Kanatas A, Bissinger O, Deppe H. Do CBCT scans alter surgical treatment plans? Comparison of preoperative surgical diagnosis using panoramic versus cone-beam CT images. J Craniomaxillofac Surg. 2016;44(10):1700-1705.
  • 10. Sugahara K, Takano M, Koyama Y, et al. Novel condylar repositioning method for 3D-printed models. Maxillofac Plast Reconstr Surg 2018;40(1):0–4.
  • 11. Arce K, Waris S, Alexander AE, Ettinger KS. Novel patient-specific 3D printed fixation tray for mandibular reconstruction with fibular free flaps. J Oral Maxillofac Surg. 2018.
  • 12. Reymus M, Fotiadou C, Hickel R, Diegritz C. 3D-printed model for hands-on training in dental traumatology. Int Endod J. 2018;51(11):1313–9.
  • 13. Gargiulo P, Arnadottir I, Gislason M, Edmunds K, Olafsson I. New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J Healthc Eng. 2017;2017.
  • 14. Yusa K, Yamanochi H, Takagi A, Iino M. Three-dimensional printing model as a tool to assist in surgery for large mandibular tumour: a case report. J Oral Maxillofac Res. 2017;8(2):1–7.
  • 15. Wiedermann JP, Joshi AS, Jamshidi A, Conchenour C, Preciado D. Utilization of a submental island flap and 3D printed model for skull base reconstruction: infantile giant cranio-cervicofacial teratoma. Int J Pediatr Otorhinolaryngol. 2017;92:143–5.
  • 16. D'Urso PS, Barker TM, Earwaker WJ, Bruce LJ, Atkinson RL, Lanigan MW, Arvier JF, Effeney DJ. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg. 1999;27(1):30-7.
  • 17. Glas HH, Vosselman N, de Visscher SAHJ. The use of 3D virtual surgical planning and computer aided design in reconstruction of maxillary surgical defects. Curr Opin Otolaryngol Head Neck Surg. 2020;28(2):122-128.
  • 18. Bhadra D, Shah NC, Arora A, Meetkumar SD. Deducing a surgical dilemma using a novel three Dimensionaldimensional printing technique Dhaval. J Conserv Dent. 2018;21:582–5.
  • 19. Alodadi A. Utilizing three-dimensional printing in treating challenged dental implant cases. World J Dent. 2018;9(3):235–41.
  • 20. Somji SH, Valladares A, Ho Kim S, Cheng Paul Yu Y, Froum SJ. The use of 3D models to improve sinus augmentation outcomes - a case report. Singap Dent J. 2017;38:63–70.
  • 21. Lanis A, Alvarez del Canto O, Barriga P, Polido WD, Morton D. Computerguided implant surgery and full-arch immediate loading with prefabricatedmetal framework-provisional prosthesis created from a 3D printed model. J Esthet Restor Dent. 2019;31(3):199–208.
  • 22. Vosselman , Glas HH, de Visscher SAHJ, Kraeima J, Merema BJ, Reintsema H, Raghoebar GM, Witjes MJH. Immediate implant-retained prosthetic obturation after maxillectomy based on zygomatic implant placement by 3D-guided surgery: a cadaver study. Int J Implant Dent. 2021 14;7(1):54.
  • 23. N Witjes MJH, Schepers RH, Kraeima J. Impact of 3D virtual planning on reconstruction of mandibular and maxillary surgical defects in head and neck oncology. Curr Opin Otolaryngol Head Neck Surg. 2018;26(2):108-114.
  • 24. Chen J, Zhang R, Liang Y, Ma Y, Song S, Jiang C. Deviation Analyses of Computer-Assisted, Template-Guided Mandibular Reconstruction With Combined Osteotomy and Reconstruction Pre-Shaped Plate Position Technology: A Comparative Study. Front Oncol. 2021;27;11:719466.
  • 25. Smithers FAE, Cheng K, Jayaram R, Mukherjee P, Clark JR. Maxillofacial reconstruction using in-house virtual surgical planning. ANZ J Surg. 2018;88(9):907-912.
  • 26. Wang Y, Qu X, Jiang J, Sun J, Zhang C, He Y. Aesthetical and Accuracy Outcomes of Reconstruction of Maxillary Defect by 3D Virtual Surgical Planning. Front Oncol. 2021;19;11:718946.
  • 27. Kuralt M, Gašperšič R, Fidler A. 3D computer-aided treatment planning in periodontology: A novel approach for evaluation and visualization of soft tissue thickness. J Esthet Restor Dent. 2020;32(5):457-462.
  • 28. Louvrier A, Marty P, Barrabe A, Euvard E, Chatelain B, Weber E, Meyer C. How useful is 3D printing in maxillofacial surgery? J Stomatol Oral Maxillofacial Surg. 2017;118(4):206-212.
  • 29. Czakó L, Vavro M, Dvoranová B, Soviš M, Šimko K, Thurzo A, Gális B, Sándor F. Three-dimensional navigation in maxillofacial surgery - the way to minimize surgical stress and improve accuracy in fibula free flap and Eagles syndrome surgical procedures. Acta Chir Plast. 2021;63(3):145-149. English.
  • 30. Tang X, Lai Q, Xue R, Ci J. Hard Tissue Preservation and Recovery in Minimally Invasive Alveolar Surgery Using Three-Dimensional Printing Guide Plate. J Craniofac Surg. 2021;12.
  • 31. Öztürk AM, Süer O, Şirintürk S, Aktuğlu K, Govsa F, Özer MA. A retrospective comparison of the conventional versus three-dimensional printed model-assisted surgery in the treatment of acetabular fractures. Acta Orthop Traumatol Turc. 2020;54(4):385-393.
  • 32. Jaroń A, Gabrysz-Trybek E, Bladowska J, Trybek G. Correlation of Panoramic Radiography, Cone-Beam Computed Tomography, and Three-Dimensional Printing in the Assessment of the Spatial Location of Impacted Mandibular Third Molars. J Clin Med. 2021;16;10(18):4189.

THE EFFECTS OF 3D MODELING ON PLANNING OF MAXILLOFACIAL SURGERY: A Preliminary CBCT STUDY

Year 2022, Volume: 25 Issue: Supplement, 1 - 6, 25.03.2022
https://doi.org/10.7126/cumudj.1035066

Abstract

Abstract:
Objectives: The aim is to evaluate the contribution of 3D modeling data to the planning of the maxillofacial surgery and to determine the indications of 3D modeling.
Materials and Methods: In this preliminary study, CBCT images of 2 patients with the Kodak 9000 3D (Kodak Carestream Health, Trophy, France) system were used. The segmentation procedures of the pathologies were performed manually, and was followed by the construction of the 3D models. A questionnaire was prepared by consensus of the research team, including the parameters which are critical in preoperative maxillofacial surgery planning. Five oral and maxillofacial surgeons independently evaluated both the traditional CBCT data and 3D model assisted data under the same viewing conditions. The extent of their decision change was scored using a 2 point Likert scale. Conventional (pre 3D model) versus 3D model assisted data (post 3D model) scores were analyzed. Pair-wise comparisons were completed using Fisher’s exact test (P < 0.05). Kappa was used to measure inter-observer agreement.
Results: In both of the evaluation sessions (pre and post 3D model), operation time, defect size and complication risk factors showed the highest variation for both patients. The difference between the decision change proportions for the variables of pre and post 3D model sessions were not statistically significant (p>0.05). Except 2 observers with excellent agreement for both evaluations (p=0.036), the agreement rates were fair without statistical significance.
Conclusions: The results confirmed that personalized 3D modeling constructed by CBCT data may lead to changes in surgical treatment planning protocol of complex cases.

References

  • 1. Marro A, Bandukwala T, Mak W. Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Curr Probl Diagn Radiol. 2016;45:2-9.
  • 2. Sun Z. 3D printing in medicine: current applications and future directions. Quant Imaging Med Surg. 2018;8:1069-77.
  • 3. Marchetti C, Bianchi A, Bassi M, Gori R,Lamberti C, Sarti A. Mathematical modeling and numerical simulation in maxillo-facial virtual surgery (VISU). J Craniofac Surg 2006;17:661-7.
  • 4. Varga E Jr, Hammer B, Hardy BM, Kamer L. The accuracy of three-dimensional model generation. What makes it accurate to be used for surgical planning? Int J Oral Maxillofac Surg. 2013;42:1159-66.
  • 5. Meglioli M, Naveau A, Macaluso GM, Catros S. 3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review. 3D Print Med. 2020;20;6(1):30.
  • 6. Tanveer W, Ridwan-Pramana A, Molinero-Mourelle P, Foroyzanfar T. Systematic Review of Clinical Applications of CAD/Cam Technology for Craniofacial Implants Placement and Manufacturing of Orbital Prostheses. INT J Environ Res Public Health. 2021;28;18(21):11349
  • 7. Weiss R 2nd, Read-Fuller A. Cone Beam Computed Tomography in Oral and Maxillofacial Surgery: An Evidence-Based Review. Dent J (Basel). 2019;2;7(2):52.
  • 8. Ahmad M, Jenny J, Downie M. Application of cone beam computed tomography in oral and maxillofacial surgery. Aust Dent J. 2012;57 Suppl 1:82-94.
  • 9. Wolff C, Mücke T, Wagenpfeil S, Kanatas A, Bissinger O, Deppe H. Do CBCT scans alter surgical treatment plans? Comparison of preoperative surgical diagnosis using panoramic versus cone-beam CT images. J Craniomaxillofac Surg. 2016;44(10):1700-1705.
  • 10. Sugahara K, Takano M, Koyama Y, et al. Novel condylar repositioning method for 3D-printed models. Maxillofac Plast Reconstr Surg 2018;40(1):0–4.
  • 11. Arce K, Waris S, Alexander AE, Ettinger KS. Novel patient-specific 3D printed fixation tray for mandibular reconstruction with fibular free flaps. J Oral Maxillofac Surg. 2018.
  • 12. Reymus M, Fotiadou C, Hickel R, Diegritz C. 3D-printed model for hands-on training in dental traumatology. Int Endod J. 2018;51(11):1313–9.
  • 13. Gargiulo P, Arnadottir I, Gislason M, Edmunds K, Olafsson I. New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J Healthc Eng. 2017;2017.
  • 14. Yusa K, Yamanochi H, Takagi A, Iino M. Three-dimensional printing model as a tool to assist in surgery for large mandibular tumour: a case report. J Oral Maxillofac Res. 2017;8(2):1–7.
  • 15. Wiedermann JP, Joshi AS, Jamshidi A, Conchenour C, Preciado D. Utilization of a submental island flap and 3D printed model for skull base reconstruction: infantile giant cranio-cervicofacial teratoma. Int J Pediatr Otorhinolaryngol. 2017;92:143–5.
  • 16. D'Urso PS, Barker TM, Earwaker WJ, Bruce LJ, Atkinson RL, Lanigan MW, Arvier JF, Effeney DJ. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg. 1999;27(1):30-7.
  • 17. Glas HH, Vosselman N, de Visscher SAHJ. The use of 3D virtual surgical planning and computer aided design in reconstruction of maxillary surgical defects. Curr Opin Otolaryngol Head Neck Surg. 2020;28(2):122-128.
  • 18. Bhadra D, Shah NC, Arora A, Meetkumar SD. Deducing a surgical dilemma using a novel three Dimensionaldimensional printing technique Dhaval. J Conserv Dent. 2018;21:582–5.
  • 19. Alodadi A. Utilizing three-dimensional printing in treating challenged dental implant cases. World J Dent. 2018;9(3):235–41.
  • 20. Somji SH, Valladares A, Ho Kim S, Cheng Paul Yu Y, Froum SJ. The use of 3D models to improve sinus augmentation outcomes - a case report. Singap Dent J. 2017;38:63–70.
  • 21. Lanis A, Alvarez del Canto O, Barriga P, Polido WD, Morton D. Computerguided implant surgery and full-arch immediate loading with prefabricatedmetal framework-provisional prosthesis created from a 3D printed model. J Esthet Restor Dent. 2019;31(3):199–208.
  • 22. Vosselman , Glas HH, de Visscher SAHJ, Kraeima J, Merema BJ, Reintsema H, Raghoebar GM, Witjes MJH. Immediate implant-retained prosthetic obturation after maxillectomy based on zygomatic implant placement by 3D-guided surgery: a cadaver study. Int J Implant Dent. 2021 14;7(1):54.
  • 23. N Witjes MJH, Schepers RH, Kraeima J. Impact of 3D virtual planning on reconstruction of mandibular and maxillary surgical defects in head and neck oncology. Curr Opin Otolaryngol Head Neck Surg. 2018;26(2):108-114.
  • 24. Chen J, Zhang R, Liang Y, Ma Y, Song S, Jiang C. Deviation Analyses of Computer-Assisted, Template-Guided Mandibular Reconstruction With Combined Osteotomy and Reconstruction Pre-Shaped Plate Position Technology: A Comparative Study. Front Oncol. 2021;27;11:719466.
  • 25. Smithers FAE, Cheng K, Jayaram R, Mukherjee P, Clark JR. Maxillofacial reconstruction using in-house virtual surgical planning. ANZ J Surg. 2018;88(9):907-912.
  • 26. Wang Y, Qu X, Jiang J, Sun J, Zhang C, He Y. Aesthetical and Accuracy Outcomes of Reconstruction of Maxillary Defect by 3D Virtual Surgical Planning. Front Oncol. 2021;19;11:718946.
  • 27. Kuralt M, Gašperšič R, Fidler A. 3D computer-aided treatment planning in periodontology: A novel approach for evaluation and visualization of soft tissue thickness. J Esthet Restor Dent. 2020;32(5):457-462.
  • 28. Louvrier A, Marty P, Barrabe A, Euvard E, Chatelain B, Weber E, Meyer C. How useful is 3D printing in maxillofacial surgery? J Stomatol Oral Maxillofacial Surg. 2017;118(4):206-212.
  • 29. Czakó L, Vavro M, Dvoranová B, Soviš M, Šimko K, Thurzo A, Gális B, Sándor F. Three-dimensional navigation in maxillofacial surgery - the way to minimize surgical stress and improve accuracy in fibula free flap and Eagles syndrome surgical procedures. Acta Chir Plast. 2021;63(3):145-149. English.
  • 30. Tang X, Lai Q, Xue R, Ci J. Hard Tissue Preservation and Recovery in Minimally Invasive Alveolar Surgery Using Three-Dimensional Printing Guide Plate. J Craniofac Surg. 2021;12.
  • 31. Öztürk AM, Süer O, Şirintürk S, Aktuğlu K, Govsa F, Özer MA. A retrospective comparison of the conventional versus three-dimensional printed model-assisted surgery in the treatment of acetabular fractures. Acta Orthop Traumatol Turc. 2020;54(4):385-393.
  • 32. Jaroń A, Gabrysz-Trybek E, Bladowska J, Trybek G. Correlation of Panoramic Radiography, Cone-Beam Computed Tomography, and Three-Dimensional Printing in the Assessment of the Spatial Location of Impacted Mandibular Third Molars. J Clin Med. 2021;16;10(18):4189.
There are 32 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Research Articles
Authors

Ali Canberk Ulusoy 0000-0003-0899-9368

Elif Şener 0000-0003-1402-9392

Meltem Özden Yüce 0000-0002-7088-9701

Mehmet Asım Özer 0000-0003-3936-6694

Anıl Karaman 0000-0002-3774-2898

Figen Gökmen 0000-0001-9635-6308

Hayal Boyacıoğlu 0000-0003-0887-0302

Pelin Güneri 0000-0001-9423-9191

Publication Date March 25, 2022
Submission Date December 10, 2021
Published in Issue Year 2022Volume: 25 Issue: Supplement

Cite

EndNote Ulusoy AC, Şener E, Özden Yüce M, Özer MA, Karaman A, Gökmen F, Boyacıoğlu H, Güneri P (March 1, 2022) THE EFFECTS OF 3D MODELING ON PLANNING OF MAXILLOFACIAL SURGERY: A Preliminary CBCT STUDY. Cumhuriyet Dental Journal 25 Supplement 1–6.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.