Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Molar Dişin Stres Dağılımı Üzerinde Farklı Faktörlerin Etkisi

Yıl 2018, Cilt: 21 Sayı: 3, 195 - 201, 17.10.2018
https://doi.org/10.7126/cumudj.440789

Öz



Amaç: Bu çalışmanın amacı bir molar dişin stres
dağılımı üzerinde farklı faktörlerin etkisini sonlu elemanlar analizi ile
değerlendirmektir.



Gereç ve Yöntem: Çalışma
için bir maksiller molar dişin 3 boyutlu diş modeli oluşturuldu. Kaviteler
(Sınıf I ve Sınıf II) bilgisayar ortamında oluşturuldu. Kaviteler bilgisayar
ortamında üç farklı restoratif material ile (kompozit rezin, amalgam ve cam
iyonomer siman) restore edildi. Bu çalışma için iki termal yük (5 ºC ve 55 ºC)
ve iki mekanik yük (mekanik tekil yük-dik ve mekanik yayılı yük-dik)
kullanıldı. On iki çalışma grubu oluşturuldu. Von Mises stres dağılımı
değerlendirildi.



Bulgular: Restoratif
materyal ve mekanik yük faktörleri için gruplar arasında Von Mises stres
değerleri istatistiksel olarak anlamlı bir farklılık göstermezken (p>0,05),
kavite geometrisi ve termal yük faktörleri için gruplar arasında istatistiksel
olarak anlamlı bir farklılık vardı (p<0,05).



Sonuçlar: Çalışmamızın sınırları
dahilinde, en yüksek Von Mises stres değeri kavite geometrisi için Sınıf I
kavitede ve termal yük için 5 ° C’de bulundu.




Kaynakça

  • 1. Narayanaswamy S, Meena N, ShetTL A, et al. Finite element analysis of stress concentration in Class V restorations of four groups of restorative materials in mandibular premolar. J Conserv Dent 2008; 11(3): 121-126.
  • 2. Hood JAA. Biomechanic of intact, prepared and restored tooth: some clinical implications. Int Dent J 1991; 41: 25-32.
  • 3. Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent 1992; 67(3): 325-327.
  • 4. Toparli M, Gökay N, Aksoy T. An investigation of temperature and stress distribution on a restored maxillary second premolar tooth using a three-dimensional finite element method. J Oral Rehabil 2000; 27(12): 1077-1081.
  • 5. Asmussen E, Peutzfeldt A. Class I and Class II restorations of resin composite: an FEM analysis of the influence of modulus of elasticity on stresses generated by occlusal loading. Dent Mater 2008; 24: 600-605.
  • 6. Guler MS, Guler C, Cakici F, Cakici EB, Sen S. Finite element analysis of thermal stress distribution in different restorative materials used in class V cavities. Niger J Clin Pract 2016; 19: 30-34.
  • 7. Hashemipour MA, Mohammadpour A, Nassab SA. Transient thermal and stress analysis of maxillary second premolar tooth using an exact three-dimensional model. Indian J Dent Res 2010; 21(2):158-164.
  • 8. Vasudeva G, Bogra P, Nikhil V, Singh V. Effect of occlusal restoration on stresses around class V restoration interface: a finite-element study. Indian J Dent Res 2011; 22(2): 295-302.
  • 9. Çelik Köycü B, İmirzalıoğlu P. Heat transfer and thermal stress analysis of a mandibular molar tooth restored by different indirect restorations using a three-dimensional Finite Element Method. J Prosthodont 2017; 26(5): 460-473.
  • 10. Korioth TW, Versluis A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit Rev Oral Biol Med 1997; 8(1): 90-104.
  • 11. Ausiello P, Franciosa P, Martorelli M, Watts DC. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth. Dent Mater 2011; 27(5): 423-430.
  • 12. Arola D, Huang MP. The influence of simultaneous mechanical and thermal loads on the stress distribution in molars with amalgam restorations. J Mater Sci Mater Med 2000; 11(3):133-140.
  • 13. Bayne SC, Thompson JY, Taylor, DF. Dental Materials. 133-233. In: Roberson TM, Heymann H, Swift EJ, Sturdevant CM (Eds). Sturdevant's Art & Science of Operative Dentistry. St. Louis: Mosby; 2002.
  • 14. Yang SH, Lang LA, Guckes AD, Felton DA. The effect of thermal change on various dowel-and-core restorative materials. J Prosthet Dent 2001; 86: 74-80.
  • 15. Lee SY, Chiang HC, Huang HM, Shih YH, Chen HC, Dong DR, Lin CT. Thermo-debonding mechanisms in dentin bonding systems using finite element analysis. Biomaterials 2001; 22(2): 113-123.
  • 16. Sidhu SK, Carrick TE, McCabe JF. Temperature mediated coefficient of dimensional change of dental tooth-colored restorative materials. Dent Mater 2004; 20: 435-440.
  • 17. Sideridou I, Achilias DS, Kyrikou E. Thermal expansion characteristics of light-cured dental resins and resin composites. Biomaterials 2004; 25: 3087-3097
  • 18. Brown WS, Jacobs HR, Thompson RE. Thermal fatigue in teeth. J Dent Res. 1972; 51: 461-467.
  • 19. Price RB, Derand T, Andreou P, Murphy D. The effect of two configuration factors, time, and thermal cycling on resin to dentin bond strengths. Biomaterials 2003; 24(6): 1013-1021.
  • 20. Sakaguchi RL, Powers JM (Eds). Craig’s Restorative Dental Materials. Philadelphia: Mosby, 2012.
  • 21. Oskui IZ, Ashtiani MN, Hashemi A, Jafarzadeh H. Effect of thermal stresses on the mechanism of tooth pain. J Endod 2014; 40(11): 1835-1839.
  • 22. Güngör MA, Kücük M, Dündar M, Karaoğlu C, Artunç C. Effect of temperature and stress distribution on all-ceramic restorations by using a three-dimensional finite element analysis. J Oral Rehabil 2004; 31(2): 172-178.
  • 23. Boushell LW, Roberson TM, Wilder Jr AD. Complex Amalgam Restorations. In: Heymann HO, Swift, Jr EJ, Ritter AV (eds). Sturdevant’s Art and Science of Operative Dentistry. St. Louis: Mosby, 2012: 429-454.
  • 24. Moorthy A, Hogg CH, Dowling AH, Gruf-ferty BF, Benetti AR, Fleming GJP. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent 2012; 40(6): 500-5.
  • 25. Valian A, Moravej-Salehi E, Geramy A, Faramarzi E. Effect of extension and type of composite-restored class II cavities on biomechanical properties of teeth: a three dimensional Finite Element Analysis. J Dent (Tehran) 2015; 12(2): 140-50.
  • 26. Chang CH, Fang CL, Hsu JT, Chen CP, Chuang SF. Cavity dimension effect on MOD dental restoration filled with resin composite–A finite element interface stress evaluation. J Med Biol Eng 2004; 24: 195-200.
  • 27. Fu G, Deng F, Wang L, Ren. The three-dimension finite element analysis of stress in posterior tooth residual root restored with postcore crown. Dent Traumatol 2010; 26(1): 64-9.
  • 28. Cortellini D, Canale A, Giordano A, Bergantini B, Bergantini D. The combined use of all-ceramic and conventional metal-ceramic restorations in the rehabilitation of severe tooth wear. Quint Dent Technol 2005; 28: 205-214.

The Effect of Different Factors on Stress Distribution in a Molar Tooth

Yıl 2018, Cilt: 21 Sayı: 3, 195 - 201, 17.10.2018
https://doi.org/10.7126/cumudj.440789

Öz




Objectives: The aim of present
study was to evaluate the effect of different factors on the stress
distribution of a molar tooth
by
finite element analysis.




Materials and Methods: A
3D tooth model of a maxillary molar tooth was created for present study. The
cavities (Class I and Class II) were created in the computer model. The cavities
were restored with three different restorative materials (resin composite,
amalgam and glass ionomer cement) in the computer model. Two thermal load (5 ºC
and 55 ºC) and two mechanical load (mechanical singular load-perpendicular and
mechanical distributed load-perpendicular) used in this study. Twelve study groups
were created. The von Mises stress distribution was evaluated.




Results: Von Mises
stress values were not statistically significant different among the groups for
restorative material and mechanical load factors (p>0.05) while there were
statistically significant differences among the groups for cavity geometry and
thermal load factors (p<0.05).




Conclusions: Within the
limitations of our study, the higher Von Mises stress values were found in
Class I cavity for cavity geometry and 5°C for
thermal load.




Kaynakça

  • 1. Narayanaswamy S, Meena N, ShetTL A, et al. Finite element analysis of stress concentration in Class V restorations of four groups of restorative materials in mandibular premolar. J Conserv Dent 2008; 11(3): 121-126.
  • 2. Hood JAA. Biomechanic of intact, prepared and restored tooth: some clinical implications. Int Dent J 1991; 41: 25-32.
  • 3. Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent 1992; 67(3): 325-327.
  • 4. Toparli M, Gökay N, Aksoy T. An investigation of temperature and stress distribution on a restored maxillary second premolar tooth using a three-dimensional finite element method. J Oral Rehabil 2000; 27(12): 1077-1081.
  • 5. Asmussen E, Peutzfeldt A. Class I and Class II restorations of resin composite: an FEM analysis of the influence of modulus of elasticity on stresses generated by occlusal loading. Dent Mater 2008; 24: 600-605.
  • 6. Guler MS, Guler C, Cakici F, Cakici EB, Sen S. Finite element analysis of thermal stress distribution in different restorative materials used in class V cavities. Niger J Clin Pract 2016; 19: 30-34.
  • 7. Hashemipour MA, Mohammadpour A, Nassab SA. Transient thermal and stress analysis of maxillary second premolar tooth using an exact three-dimensional model. Indian J Dent Res 2010; 21(2):158-164.
  • 8. Vasudeva G, Bogra P, Nikhil V, Singh V. Effect of occlusal restoration on stresses around class V restoration interface: a finite-element study. Indian J Dent Res 2011; 22(2): 295-302.
  • 9. Çelik Köycü B, İmirzalıoğlu P. Heat transfer and thermal stress analysis of a mandibular molar tooth restored by different indirect restorations using a three-dimensional Finite Element Method. J Prosthodont 2017; 26(5): 460-473.
  • 10. Korioth TW, Versluis A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit Rev Oral Biol Med 1997; 8(1): 90-104.
  • 11. Ausiello P, Franciosa P, Martorelli M, Watts DC. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth. Dent Mater 2011; 27(5): 423-430.
  • 12. Arola D, Huang MP. The influence of simultaneous mechanical and thermal loads on the stress distribution in molars with amalgam restorations. J Mater Sci Mater Med 2000; 11(3):133-140.
  • 13. Bayne SC, Thompson JY, Taylor, DF. Dental Materials. 133-233. In: Roberson TM, Heymann H, Swift EJ, Sturdevant CM (Eds). Sturdevant's Art & Science of Operative Dentistry. St. Louis: Mosby; 2002.
  • 14. Yang SH, Lang LA, Guckes AD, Felton DA. The effect of thermal change on various dowel-and-core restorative materials. J Prosthet Dent 2001; 86: 74-80.
  • 15. Lee SY, Chiang HC, Huang HM, Shih YH, Chen HC, Dong DR, Lin CT. Thermo-debonding mechanisms in dentin bonding systems using finite element analysis. Biomaterials 2001; 22(2): 113-123.
  • 16. Sidhu SK, Carrick TE, McCabe JF. Temperature mediated coefficient of dimensional change of dental tooth-colored restorative materials. Dent Mater 2004; 20: 435-440.
  • 17. Sideridou I, Achilias DS, Kyrikou E. Thermal expansion characteristics of light-cured dental resins and resin composites. Biomaterials 2004; 25: 3087-3097
  • 18. Brown WS, Jacobs HR, Thompson RE. Thermal fatigue in teeth. J Dent Res. 1972; 51: 461-467.
  • 19. Price RB, Derand T, Andreou P, Murphy D. The effect of two configuration factors, time, and thermal cycling on resin to dentin bond strengths. Biomaterials 2003; 24(6): 1013-1021.
  • 20. Sakaguchi RL, Powers JM (Eds). Craig’s Restorative Dental Materials. Philadelphia: Mosby, 2012.
  • 21. Oskui IZ, Ashtiani MN, Hashemi A, Jafarzadeh H. Effect of thermal stresses on the mechanism of tooth pain. J Endod 2014; 40(11): 1835-1839.
  • 22. Güngör MA, Kücük M, Dündar M, Karaoğlu C, Artunç C. Effect of temperature and stress distribution on all-ceramic restorations by using a three-dimensional finite element analysis. J Oral Rehabil 2004; 31(2): 172-178.
  • 23. Boushell LW, Roberson TM, Wilder Jr AD. Complex Amalgam Restorations. In: Heymann HO, Swift, Jr EJ, Ritter AV (eds). Sturdevant’s Art and Science of Operative Dentistry. St. Louis: Mosby, 2012: 429-454.
  • 24. Moorthy A, Hogg CH, Dowling AH, Gruf-ferty BF, Benetti AR, Fleming GJP. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent 2012; 40(6): 500-5.
  • 25. Valian A, Moravej-Salehi E, Geramy A, Faramarzi E. Effect of extension and type of composite-restored class II cavities on biomechanical properties of teeth: a three dimensional Finite Element Analysis. J Dent (Tehran) 2015; 12(2): 140-50.
  • 26. Chang CH, Fang CL, Hsu JT, Chen CP, Chuang SF. Cavity dimension effect on MOD dental restoration filled with resin composite–A finite element interface stress evaluation. J Med Biol Eng 2004; 24: 195-200.
  • 27. Fu G, Deng F, Wang L, Ren. The three-dimension finite element analysis of stress in posterior tooth residual root restored with postcore crown. Dent Traumatol 2010; 26(1): 64-9.
  • 28. Cortellini D, Canale A, Giordano A, Bergantini B, Bergantini D. The combined use of all-ceramic and conventional metal-ceramic restorations in the rehabilitation of severe tooth wear. Quint Dent Technol 2005; 28: 205-214.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Original Research Articles
Yazarlar

Mehmet Sami Güler

Sadri Şen

Yayımlanma Tarihi 17 Ekim 2018
Gönderilme Tarihi 4 Temmuz 2018
Yayımlandığı Sayı Yıl 2018Cilt: 21 Sayı: 3

Kaynak Göster

EndNote Güler MS, Şen S (01 Ekim 2018) The Effect of Different Factors on Stress Distribution in a Molar Tooth. Cumhuriyet Dental Journal 21 3 195–201.

Cited By

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.