Araştırma Makalesi
BibTex RIS Kaynak Göster

Shear Bond Strength Of Two Calcium Silicate-Based Cements to Compomer

Yıl 2018, Cilt: 21 Sayı: 1, 18 - 23, 24.04.2018
https://doi.org/10.7126/cumudj.381422

Öz

Objectives: The purposes of this in vitro study was to compare the bond strength of Biodentine® and Imicryl
MTA to a compomer material, and to examine the effect of the setting time on
the bond strength.



Materials
and Methods:
A total of 100
acrylic blocks with a hole (4 mm in diameter and 2 mm in height) were prepared.
Acrylic blocks were randomly divided into two main groups according to cement
type to be applied, Biodontine® or Imicryl MTA (n = 50). The specimens of each main group were then divided into 5
subgroups, which were randomized relative to different setting times. (12
minutes, 24 hours, 48 hours, 72 hours, and 96 hours) (n = 10). The samples were filled completely with Biodentine® or Imicrly
MTA according to the manufacturer's instructions. Compomer was placed in this
transparent tube with the help of a hand plugger and light cured for 40 seconds
with the LED device (EliparTM, 3M ESPE, MN, USA) to polymerize the
compomer. The acrylic molds were fixed to a universal test machine and shear
bond strength (SBS) test was made under shear force at a cross-speed of 1
mm/min. Data were analyzed by a two-way ANOVA and Tukey’s post-hoc test
(p=0.05).



Results: While, Biodentine® had significantly higher SBS values than Imicrly MTA
at 12m setting time (p<0.05), there was no difference between Biodentine®
and Imicrly MTA among other setting periods (p>0.05). Regardless of cements
tested, there were similar SBS values among pairwise comparisons between
setting time groups (p>0.05).



Conclusions: There were higher SBS values of Biodentine® to compomer than Imicrly MTA
in all setting time groups, the only statistical significance existed in 12 min
group. 

Keywords:
Biodentine®, bond strength, calcium silicate-based cement, compomer

Kaynakça

  • 1. Martens L, Rajasekharan S, Cauwels R. Pulp management after traumatic injuries with a tricalcium silicate-based cement (Biodentine™): a report of two cases, up to 48 months follow-up. Eur Arch Paediatr Dent 2015;16:491-496.
  • 2. Falster CA, Araujo FB, Straffon LH, Nor J. Indirect pulp treatment: in vivo outcomes of an adhesive resin system vs calcium hydroxide for protection of the dentin-pulp complex. Pediatr Dent 2002;24:241-248.
  • 3. Mickenautsch S, Yengopal V, Banerjee A. Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: A quantitative systematic review. Dent Mater 2010;26:761-770.
  • 4. Li Z, Cao L, Fan M, Xu Q. Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: a meta-analysis. J Endod 2015;41:1412-1417. 5. Sarkar N, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31:97-100.
  • 6. Dawood AE, Parashos P, Wong RH, Reynolds EC, Manton DJ. Calcium silicate‐based cements: composition, properties, and clinical applications. J Investig Clin Dent 2017;8:
  • 7. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.
  • 8. Cavenago BC, del Carpio-Perochena AE, Ordinola-Zapata R, Estrela C, Garlet GP, Tanomaru-Filho M, Weckwerth PH, de Andrade FB, Duarte MAH. Effect of Using Different Vehicles on the Physicochemical, Antimicrobial, and Biological Properties of White Mineral Trioxide Aggregate. J Endod 2017;43:779-786.
  • 9. Bakhtiar H, Mirzaei H, Bagheri M, Fani N, Mashhadiabbas F, Eslaminejad MB, Sharifi D, Nekoofar M, Dummer P. Histologic tissue response to furcation perforation repair using mineral trioxide aggregate or dental pulp stem cells loaded onto treated dentin matrix or tricalcium phosphate. Clin Oral Investig 2017;1-10.
  • 10. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36:400-413.
  • 11. Bronnec F. Biodentine: a dentin substitute for the repair of root perforations, apexification and retrograde root filling. J Endod 2010;36:400-413.
  • 12. Rajasekharan S, Martens L, Cauwels R, Verbeeck R. Biodentine™ material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent 2014;15:147-158.
  • 13. Marconyak LJ, Kirkpatrick TC, Roberts HW, Roberts MD, Aparicio A, Himel VT, Sabey KA. A comparison of coronal tooth discoloration elicited by various endodontic reparative materials. J Endod 2016;42:470-473.
  • 14. Alzraikat H, Taha NA, Qasrawi D, Burrow MF. Shear bond strength of a novel light cured calcium silicate based-cement to resin composite using different adhesive systems. Dent Mater J 2016;35:881-887.
  • 15. Blumer S, Peretz B, Ratson T. The Use of Restorative Materials in Primary Molars among Pediatric Dentists in Israel. J Clin Pediatr Dent 2017;41:199-203.
  • 16. Tulumbaci F, Almaz ME, Arikan V, Mutluay MS. Shear bond strength of different restorative materials to mineral trioxide aggregate and Biodentine. J Conserv Dent 2017;20:292.
  • 17. Aydin MN, Buldur B. The effect of intracanal placement of various medicaments on the bond strength of three calcium silicate-based cements to root canal dentin. J Adhes Sci Technol 2018;32:542-552.
  • 18. Retief D, Mandras R, Russell C. Shear bond strength required to prevent microleakage of the dentin/restoration interface. Am J Dent 1994;7:44-46.
  • 19. Flury S, Peutzfeldt A, Lussi A. Influence of increment thickness on microhardness and dentin bond strength of bulk fill resin composites. Dent Mater 2014;30:1104-1112.
  • 20. Armstrong S, Geraldeli S, Maia R, Raposo LHA, Soares CJ, Yamagawa J. Adhesion to tooth structure: a critical review of “micro” bond strength test methods. Dent Mater 2010;26:e50-e62.
  • 21. Van Noort R, Noroozi S, Howard I, Cardew G. A critique of bond strength measurements. J Dent 1989;17:61-67.
  • 22. Atabek D, Sillelioğlu H, Ölmez A. Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. J Endod 2012;38:1288-1292.
  • 23. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013;29:e20-e28.
  • 24. Bachoo I, Seymour D, Brunton P. A biocompatible and bioactive replacement for dentine: is this a reality? The properties and uses of a novel calcium-based cement. Br Dent J 2013;214:E5-E5.
  • 25. Odabaş ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to biodentine. ScientificWorldJournal 2013;2013:
  • 26. Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite–calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater 2014;30:343-349.

Kompomerin Kalsiyum Silikat Esaslı Simanlara Olan Makaslama Bağlanma Dayanımı

Yıl 2018, Cilt: 21 Sayı: 1, 18 - 23, 24.04.2018
https://doi.org/10.7126/cumudj.381422

Öz

Amaç: Bu in vitro çalışmanın
amacı, Biodentine® ve
Imicrly
MTA'nın bir kompomer materyaline makaslama bağlanma dayanımını
karşılaştırmak ve farklı sertleşme sürelerinin bağlanma dayanımına olan etkisini
incelemektir.

Gereç
ve Yöntem:
 
Ortası delikli (4 mm çapında ve 2 mm yüksekliğinde) toplam 100 akrilik
blok hazırlandı. Akrilik bloklar uygulanacak siman tipine göre rastgele iki ana
gruba ayrıldı, Biodentine® veya
Imicrly
MTA (n = 50). Daha
sonra, her bir ana grubun numuneleri, farklı sertleşme sürelerine göre rastgele
seçilen 5 alt gruba ayrıldı. (12 dakika, 24 saat, 48 saat, 72 saat ve 96 saat)
(n = 10). Numuneler, üreticinin
talimatlarına göre tamamen Biodentine® veya
Imicrly MTA ile dolduruldu. Kompomer materyali
şeffaf tüp yardımıyla yerleştirildi ve kompomer LED cihazıyla (EliparTM, 3M
ESPE, MN, ABD) 40 saniye ışıkla polimerize edildi. Akrilik kalıplar universal
bir test makinesine sabitlendi ve kesme kuvveti 1 mm/dakika çapraz hızda olacak
şekilde makaslama bağlanma dayanım (MBD) testi yapıldı. Veriler iki yönlü ANOVA
ve Tukey's post-hoc testi ile analiz edildi (p = 0.05).





Bulgular: Biodentine®'in 12 dk sertleşme süresinde Imicrly MTA'ya göre MBD
değerlerinde anlamlı derecede yüksek iken (p
<0.05) diğer ayar dönemleri arasında Biodentine® ile MTA arasında anlamlı fark
yoktu (p> 0.05). Test edilen simanlardan
bağımsız olarak, sertleşme süreleri grupları arasındaki çift karşılaştırmalarda
benzer MBD değerleri vardı (p> 0.05).
Sonuçlar: Tüm sertleşme zamanı
gruplarında, Biodentine®'in kompomere olan bağlanma dayanım değerleri
Imicrly MTA'ya göre daha
yüksek görülürken, yalnızca istatistiksel anlamlılık 12 dakika sertleşme süresi
grubunda mevcuttu. 

Anahtar
Kelimeler: Biodentine®, bağlanma dayanımı, kalsiyum silikat esaslı siman,
kompomer

Kaynakça

  • 1. Martens L, Rajasekharan S, Cauwels R. Pulp management after traumatic injuries with a tricalcium silicate-based cement (Biodentine™): a report of two cases, up to 48 months follow-up. Eur Arch Paediatr Dent 2015;16:491-496.
  • 2. Falster CA, Araujo FB, Straffon LH, Nor J. Indirect pulp treatment: in vivo outcomes of an adhesive resin system vs calcium hydroxide for protection of the dentin-pulp complex. Pediatr Dent 2002;24:241-248.
  • 3. Mickenautsch S, Yengopal V, Banerjee A. Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: A quantitative systematic review. Dent Mater 2010;26:761-770.
  • 4. Li Z, Cao L, Fan M, Xu Q. Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: a meta-analysis. J Endod 2015;41:1412-1417. 5. Sarkar N, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31:97-100.
  • 6. Dawood AE, Parashos P, Wong RH, Reynolds EC, Manton DJ. Calcium silicate‐based cements: composition, properties, and clinical applications. J Investig Clin Dent 2017;8:
  • 7. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.
  • 8. Cavenago BC, del Carpio-Perochena AE, Ordinola-Zapata R, Estrela C, Garlet GP, Tanomaru-Filho M, Weckwerth PH, de Andrade FB, Duarte MAH. Effect of Using Different Vehicles on the Physicochemical, Antimicrobial, and Biological Properties of White Mineral Trioxide Aggregate. J Endod 2017;43:779-786.
  • 9. Bakhtiar H, Mirzaei H, Bagheri M, Fani N, Mashhadiabbas F, Eslaminejad MB, Sharifi D, Nekoofar M, Dummer P. Histologic tissue response to furcation perforation repair using mineral trioxide aggregate or dental pulp stem cells loaded onto treated dentin matrix or tricalcium phosphate. Clin Oral Investig 2017;1-10.
  • 10. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36:400-413.
  • 11. Bronnec F. Biodentine: a dentin substitute for the repair of root perforations, apexification and retrograde root filling. J Endod 2010;36:400-413.
  • 12. Rajasekharan S, Martens L, Cauwels R, Verbeeck R. Biodentine™ material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent 2014;15:147-158.
  • 13. Marconyak LJ, Kirkpatrick TC, Roberts HW, Roberts MD, Aparicio A, Himel VT, Sabey KA. A comparison of coronal tooth discoloration elicited by various endodontic reparative materials. J Endod 2016;42:470-473.
  • 14. Alzraikat H, Taha NA, Qasrawi D, Burrow MF. Shear bond strength of a novel light cured calcium silicate based-cement to resin composite using different adhesive systems. Dent Mater J 2016;35:881-887.
  • 15. Blumer S, Peretz B, Ratson T. The Use of Restorative Materials in Primary Molars among Pediatric Dentists in Israel. J Clin Pediatr Dent 2017;41:199-203.
  • 16. Tulumbaci F, Almaz ME, Arikan V, Mutluay MS. Shear bond strength of different restorative materials to mineral trioxide aggregate and Biodentine. J Conserv Dent 2017;20:292.
  • 17. Aydin MN, Buldur B. The effect of intracanal placement of various medicaments on the bond strength of three calcium silicate-based cements to root canal dentin. J Adhes Sci Technol 2018;32:542-552.
  • 18. Retief D, Mandras R, Russell C. Shear bond strength required to prevent microleakage of the dentin/restoration interface. Am J Dent 1994;7:44-46.
  • 19. Flury S, Peutzfeldt A, Lussi A. Influence of increment thickness on microhardness and dentin bond strength of bulk fill resin composites. Dent Mater 2014;30:1104-1112.
  • 20. Armstrong S, Geraldeli S, Maia R, Raposo LHA, Soares CJ, Yamagawa J. Adhesion to tooth structure: a critical review of “micro” bond strength test methods. Dent Mater 2010;26:e50-e62.
  • 21. Van Noort R, Noroozi S, Howard I, Cardew G. A critique of bond strength measurements. J Dent 1989;17:61-67.
  • 22. Atabek D, Sillelioğlu H, Ölmez A. Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. J Endod 2012;38:1288-1292.
  • 23. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013;29:e20-e28.
  • 24. Bachoo I, Seymour D, Brunton P. A biocompatible and bioactive replacement for dentine: is this a reality? The properties and uses of a novel calcium-based cement. Br Dent J 2013;214:E5-E5.
  • 25. Odabaş ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to biodentine. ScientificWorldJournal 2013;2013:
  • 26. Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite–calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater 2014;30:343-349.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Original Research Articles
Yazarlar

Burak Buldur

Fatih Öznurhan

Mevlüt Kayabaşı

Feride Şahin

Yayımlanma Tarihi 24 Nisan 2018
Gönderilme Tarihi 19 Ocak 2018
Yayımlandığı Sayı Yıl 2018Cilt: 21 Sayı: 1

Kaynak Göster

EndNote Buldur B, Öznurhan F, Kayabaşı M, Şahin F (01 Nisan 2018) Shear Bond Strength Of Two Calcium Silicate-Based Cements to Compomer. Cumhuriyet Dental Journal 21 1 18–23.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.