Research Article
BibTex RIS Cite

Ratlarda Deneysel Olarak Oluşturulan Kritik boyutlu kemik defektlerine uygulanan sığır kaynaklı deminarelize kemik greftininin kemik iyiyleşmesine olan etkisinin otojen,allojenik ve sentetik greftlerle karşılaştırılmasının histomorfometrik olarak incelenmesi

Year 2018, , 387 - 395, 30.12.2018
https://doi.org/10.7126/cumudj.475498

Abstract

Amaç: Kemik dokusu iyileşme özelliğine (rejenerasyon) sahiptir ve
yaralanan kemik dokusu şekil ve fonksiyonunu yeniden
kazanabilmektedir. Fakat yaralanmanın boyutu büyük olduğu zaman
iyileşme sınırlı kalabilmektedir. Kritik boyutlu kemik defekti; kemik
dokusunda, canlının yaşamı boyunca, şekil ve fonksiyon olarak,
kendiliğinden tamamen iyileşmesinin mümkün olmayacağı boyuttaki
defekt anlamına gelir. Kritik kemik defektlerinde tedavi için otojen
greft uygulaması altın standart olarak kabul edilir. Otojen kemik
greftinin bazı dezavantajları nedeniyle araştırmacılar çalışmalarını
farklı greft materyalleri üzerinde yoğunlaştırmışlardır. Bu çalışmalar
neticesinde Ksenogreft, Allogreft ve sentetik greft materyalleri gibi
seçenekler ortaya çıkmıştır.
Çalışmamızın amacı 5mm çapında kritik boyutlu kemik defektlerinde
sığır kaynaklı demineralize kemik grefti uygulamasının kemik
iyileşmesine etkisi ile aynı çaptaki defektlere otojenik, allojenik ve
sentetik greft materyali uygulandığı zaman elde edilen iyileşmelerin
histomorfometrik olarak incelenmesidir.
Gereç ve Yöntemler: Deney hayvanları her grup 8 deney hayvanından
oluşan 4 gruba ayrıldı. Kontrol grubunda mandibulada defekt
oluşturulduktan sonra defekt sığır kaynaklı kemik grefti (Integros Bone
Plus XS Adana/Türkiye) ile dolduruldu. Daha sonraki deney
gruplarında; I. grupta oluşturulan kritik boyutlu defekte trefin frezle
çıkartılan otojen kemik tekrar konuldu. II. grupta oluşturulan kritik
boyutlu defekte insan kaynaklı kemik grefti (Korea Bone Bank (KBB)
Gasandong Keumcheongu Seoul/Korea) uygulandı. III. grupta
oluşturulan kritik boyutlu kemik defektine ise sentetik kemik grefti
grubunda yer alan β-trikalsiyum fosfat (Cerasorb North Caroline/USA)
uygulandı. 28 gün sonra ratlar öldürüldü.Her grup sakrifiye edilerek
histomorfometrik incelemeye alındı.
Sonuç: Farklı greft materyallerinin 28. günde yeni kemik oluşumuna
olan etkisinin histomorfometrik olarak incelendiğinde otojen kemik
grefti, allogreft ve sığır kaynaklı kemik grefti uygulanan gruplar
arasında yeni oluşan kemik hacmi bakımından anlamlı bir fark
bulunmazken, sentetik kemik grefti uygulanan grupla aralarındaki fark
anlamlı bulunmuştur.
Otojen kemik grefti günümüzde hala altın standart olarak kabul
edilmesine rağmen, elde edilmesi ve uygulanmasındaki zorluklar
nedeniyle çalışmamızda kullandığımız sığır kaynaklı kemik greftinin
otojen kemik greftine alternatif olarak güvenilir ve etkili biçimde
kullanılabileceği belirlenmiştir. 

References

  • 1.Murugan R, Ramakrishna S. (2005): Acta Biomater. (2): p.201-206
  • 2.Özeç İ, Kılıç E, Gümüş C, Göze F. (2007): Lokal olarak üç farklı dozda simvastatin uygulamasının kemik defekti iyileşmesi üzerine etkisinin değerlendirilmesi. Cumhuriyet Üniversitesi Diş Hek. Fak. Dergisi, 10(2): p.82-86.
  • 3.Donos N, Graziani F, Mardas N, Kostopoulos L. (2011): The use of human hypertrophic chondrocytes-derived extracellular matrix for the treatment of critical-size calvarial defects. Clin Oral Implants Res. 22(12): p.1346-1353.
  • 4.Develioğlu H. (2003): Kritik boyutlu ve kritik boyutlu olmayan defektler. Cumhuriyet Üniversitesi Diş Hek. Fak. Derg. 6(1): p.60-63.
  • 5.Clokie CM, Moghadam H, Jackson MT, Sandor GK. (2002): Closure of critical sized defects with allogenic and alloplastic bone substitutes. J Craniofac Surg. 13(1): p.111-121.
  • 6.Mokbel N, Bou Serhal C, Matni G, Naaman N. (2008): Healing patterns of critical size bony defects in rat following bone graft. Oral Maxillofac Surg. (2): p.73-78.
  • 7.Tomin E, Beksaç B, Joseph M, Lane MJ. (2002): Amerika Birleşik Devletlerinde Ortopedik Girişimleri Otogreftlerin yerine kullanılan materyallere toplu bakış. Journal of Arthroplasty and Arthrosopic Surgery, 13: p.114-129.
  • 8.Başarir K, Selek H, Yildiz Y, Sağlik Y. (2005): [Nonvascularized fibular grafts in the reconstruction of bone defects in orthopedic oncology. Acta Orthop Traumatol Turc 39(4): p.300-306.
  • 9.Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. (2008): Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A Long-term histomorphometric study in minipigs. J. Biomed Mater Res B Appl Biomater. 90(1): p.171-181
  • 10.Tezulaş E, Özkan CD. (2008): Decontamination of autogenous bone grafts collected from dental implant sites via osteotomy: review, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 106: p.679-684
  • 11.Alfaro FH. (2006): Bone Grafting in Oral Implantology Techniques and Clinical Applications. Quintessence Publishing Co Ltd. UK.
  • 12.Kahnberg KE. (2005): Bone grafting Techniques for Maxillary Implants. Blackwell Munksgaard, Blackwell Publishing. Sweeden, p.2-11.
  • 13.Becker W, Urist M, Becker BE. (1998): Clinical and histological observation of sites implanted with intraoral autologous bone grafts or allografts. 15 human case reports. J Periodontol. 67: p.1025-1033.
  • 14.Rokn AR, Khodadoostan MA, Ghahroudi AAR, Motahhary P, Fard MJK, Bruyn HD, Afzalifar R, Soolar E, Soolari A. (2011): Bone formation with two types of grafting materials: a histologic and histomorphometric study. Open Dent J. (5): p.96-104
  • 15.Wolfe MW, Salkeld SL, Cook SD. (1998): Bone Morphogenetic Proteins in the treatment of non unions and bone defects: historical perspective and current knowledge. J Orthop Trauma 12(6): p.407-412
  • 16.bafiarir ve ark .çapraz enfeksiyonlar ve kontrolü 2005.
  • 17.Kohler R, Lorge F, Brunat-Mentigny M, Noyer D, Patricot L. (1990): Massive bone allografts in children. Int Orthop. 14(3): p.249-253
  • 18.Loty B, Courpied JP, Tomeno B, Postel M, Forest M, Abelanet R. (1990): Bone allografts sterilised by irradiation. Biological properties, procurement and results of 150 massive allografts. Int Orthop. 14(3): p.237-242.
  • 19.Salkeld SL, Patron LP, Barrack RL, Cook SD. (2001): The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. J Bone Joint Surg Am.83-A (6):p.803-816.
  • 20.Delloye C, Verhelpen M, d'Hemricourt J, Govaerts B, Bourgois R. (1992): Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects. Clin Orthop Relat Res. (282): p.273-292.
  • 21.Glowacki J, Altobelli D, Mulliken JB. (1981): Fate of mineralized and demineralized osseous implants in cranial defects. Calcif Tissue Int. 33(1): p.71-76.
  • 22.Klinge B, Alberius P, Isaksson S, Jönsson J. (1992): Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg. 50(3): p.241-249.
  • 23.Kübler N, Reuther J, Kirchner T, Priessnitz B, Sebald W. (1993): Osteoinductive, morphologic, and biomechanical properties of autolyzed, antigen-extracted, allogeneic human bone. J Oral Maxillofac Surg. 51(12): p.1346-1357.
  • 24.Tuskan C, Yaltırık M. Oral ve Maksillofasiyal Cerrahide Kullanılan Biyomateryaller. İ.Ü. Basım ve Yayınevi Müdürlüğü, İstanbul. 2002; p.19-26.
  • 25.Berglundh T, Lindhe J. (1997): Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res. 8(2): p.117-124
  • 26.Peetz M. (1997): Characterization of xenogenic bone material. In: Boyne PJ, Evensen L. Eds. Osseous reconstruction of the maxilla and the mandible: surgical techniques using titanium mesh and bone mineral, Carol Stream: Quintessence Publishing: p.87–100.
  • 27.Timoçin N, Kaynar A, Öztürk S, Sungur A, Demiryont M. (1993): Biocoral Uygulanan Kemik Defektlerinde İyileşmenin Radyonüklit ve Histopatolojik Yöntemlerle İncelenmesi. İ.Ü. Diş Hekimliği Fakültesi Dergisi, 3: p.173-178.
  • 28.Rabie AB, Wong RW, Hagg U. (2000): Composite autogenous bone and demineralized bone matrices used to repair defects in the parietal bone of rabbits. British J Oral Maxillofac Surg. 38(5): p.565-570.
  • 29.Redondo LM, Verrier Hernández A, García Cantera JM, Torres Nieto MA, Vaquero Puerta C. (1997): Repair of experimental mandibular defects in rats with autogenous, demineralised, frozen and fresh bone. British J Oral Maxillofac Surg. 35(3): p.166-169.
  • 30.Block MS, Kent JN, Ardoin RC, Davenport W. (1987): Mandibular augmentation in dogs with hydroxylapatite combined with demineralized bone. J Oral Maxillofac Surg. 45(5): p.414-420.
  • 31.Bauer TW, Muschler GF. (2000): Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. (371): p.10-27.
  • 32.Merten ve ark. 2003,
  • 33.zijdervart 2005
  • 34.Al Ruhaimi KA. (2001): Bone graft substitutes: A comparative qualitative histologic review of current osteoconductive grafting materials. Int J Oral Maxillofac Implants. 16(1): p.105-114.
  • 35.Younger EM, Chapman MW. (1989): Morbidity at bone graft donor sites. J. Orthop. Trauma. 3(3): p.192-195.
  • 36.Efeoğlu E, Sandallı P. (1996): A 14-year follow-up study of localized juvenile periodontitis treated by scaling and root planing, systemic metronidazole, and subgingival curettage: a case report. Periodontal Clin Investig. 18(2): p. 6-12.
  • 37.Colnot C, Romero DM, Huang S, Helms JA. (2005): Mechanisms of action of demineralized bone matrix in the repair of cortical bone defects. Clin Orthop Relat Res. (435): p.69-78.38.Eryılmaz AT. (2008): Demineralize kemik matriksinin farklı doku planlarında histolojik davranışının değerlendirilmesi. Uzmanlık Tezi, Gazi Üniversitesi Tıp Fakültesi Plastik, Rekonstrüktif ve Estetik Cerrahi ABD, Ankara, p.79.
  • 39.Lee C, Antonyshyn OM, Forrest CR. (1995): Cranioplasty: indications, technique, and early results of autogenous split skull cranial vault reconstruction. J Craniomaxillofac Surg. 23(3): p.133-142.
  • 40.becker 1998
  • 41.Kruyt MC, Dhert WJ, Oner C. (2004): Osteogenicity of autologous bone transplants in the goat. Transplantation 77: p.504-509.
  • 42.Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. (2008): Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29(9):p.1177-1188.
  • 43.Gerressen M, Hermanns-Sachweh B, Riediger D, Hilgers RD, Spiekermann H, Ghassemi A. (2009): Purely cancellous vs. corticocancellous bone in sinus floor augmentation with autogenous iliac crest: a prospective clinical trial. Clinical Oral Implants Research 20(2): p.109-115.
  • 44.Younger EM, Chapman MW. (1989): Morbidity at bone graft donor sites. J. Orthop. Trauma. 3(3): p.192-195.
  • 45.Banwart JC, Asher MA, Hassanein RS. (1995): Iliac crest bone graft harvest donor site morbidity. A statistical evaluation Spine (Phila Pa 1976). 20(9): p.1055-1060.
  • 46.Gupta AR, Shah NR, Patel TC, Grauer JN. (2001): Perioperative and long-term complications of iliac crest bone graft harvesting for spinal surgery: a quantitative review of the literature. Int Med Journal Vol. 8(3): p.163–166.
  • 47.Einhorn TA, Lee CA. (2001): Bone regeneration: new findings and potential clinical applications. J Am Acad Orthop Surg. 9(3): p.157-165.
  • 48.St John TA, Vaccaro AR, Sah AP, Schaefer M, Berta SC, Albert T, Hilibrand A. (2003): Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop (Belle Mead NJ) 32(1): p.18-23.
  • 49.mokbel ve ark 2008
  • 50.Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. (2009): Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg. 38(4): p.356-362.
  • 51.Shand JM, Heggie AA, Holmes AD, Holmes W. (2002): Allogeneic bone grafting of calvarial defects: an experimental study in the rabbit. Int J Oral Maxillofac Surg. (5): p.525-531.
  • 52.Athanasiou VT, Papachristou DJ, Panagopoulos A, Saridis A, Scopa CD, Megas P (2010): Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med Sci Monit. 16(1): p.24-31.

Histomorphometric Assessment of the Impact of Bovine Demineralized Bone Graft on Bone Healing Versus Autogenous, Allogeneic and Synthetic Grafts in Experimentally- Induced Critical Size Bone Defects in Rats

Year 2018, , 387 - 395, 30.12.2018
https://doi.org/10.7126/cumudj.475498

Abstract



Aim: Bone tissue has the ability to heal itself (regeneration) and may
restore its morphology and function when injured. However, healing
may be limited in the case of large wounds. A “critical-size defect” is
an intraosseous wound in a particular bone and species of animal that
will not heal spontaneously morphologically and functionally during
the lifetime of the animal. Autogenous bone grafts have been regarded
as “gold standard” for treatment of critical-size bone defects. Known
drawbacks of autogenous bone graft have led to research efforts
focusing on different graft materials and resulted in several alternative
substitutes including xenografts, allografts and synthetic graft
materials.
The aim of the present study was to perform a histomorphometric study
to investigate the effect of bovine demineralized bone graft on bone
healing in comparison to autogenous, allogeneic and synthetic graft
materials when applied into critical size bone defects with a diameter
of 5 mm.
Materials and methods: Experimental animals were divided into 4
groups, each having 8 rats. In the control group, a mandibular defect
was created and then filled with a bovine graft (Integros Bone Plus XS
Adana/Turkey). In the experimental groups, autogenous bone was
reinserted into the critical-size defect which was created using a
trephine bur in Group I (autogenous group) and Group II received a
human graft (Korea Bone Bank (KBB) Gasandong Keumcheongu
Seoul/South Korea) to fill the critical-size defect. For Group III, a
synthetic bone graft β-tricalcium phosphate (Cerasorb North
Carolina/USA) was applied on the critical-size bone defect. Specimens
were obtained for histomorphometric examination and rats were
sacrificed on day 28.
Results: Histomorphometric examination performed on day 28 to
evaluate the relative effects of different graft materials on new bone
formation showed no significant difference in the volume of newly
formed bone between groups receiving autogenous bone graft, allograft
and bovine xenograft but a significant difference was observed versus
synthetic bone graft group.
Conclusion: While autogenous bone graft is currently regarded as the
gold standard for bone regeneration, the difficulties in harvesting and
application of autografts limit their use. Our results demonstrate that
bovine bone graft may be used as a safe and effective alternative to
autogenous bone graft.

References

  • 1.Murugan R, Ramakrishna S. (2005): Acta Biomater. (2): p.201-206
  • 2.Özeç İ, Kılıç E, Gümüş C, Göze F. (2007): Lokal olarak üç farklı dozda simvastatin uygulamasının kemik defekti iyileşmesi üzerine etkisinin değerlendirilmesi. Cumhuriyet Üniversitesi Diş Hek. Fak. Dergisi, 10(2): p.82-86.
  • 3.Donos N, Graziani F, Mardas N, Kostopoulos L. (2011): The use of human hypertrophic chondrocytes-derived extracellular matrix for the treatment of critical-size calvarial defects. Clin Oral Implants Res. 22(12): p.1346-1353.
  • 4.Develioğlu H. (2003): Kritik boyutlu ve kritik boyutlu olmayan defektler. Cumhuriyet Üniversitesi Diş Hek. Fak. Derg. 6(1): p.60-63.
  • 5.Clokie CM, Moghadam H, Jackson MT, Sandor GK. (2002): Closure of critical sized defects with allogenic and alloplastic bone substitutes. J Craniofac Surg. 13(1): p.111-121.
  • 6.Mokbel N, Bou Serhal C, Matni G, Naaman N. (2008): Healing patterns of critical size bony defects in rat following bone graft. Oral Maxillofac Surg. (2): p.73-78.
  • 7.Tomin E, Beksaç B, Joseph M, Lane MJ. (2002): Amerika Birleşik Devletlerinde Ortopedik Girişimleri Otogreftlerin yerine kullanılan materyallere toplu bakış. Journal of Arthroplasty and Arthrosopic Surgery, 13: p.114-129.
  • 8.Başarir K, Selek H, Yildiz Y, Sağlik Y. (2005): [Nonvascularized fibular grafts in the reconstruction of bone defects in orthopedic oncology. Acta Orthop Traumatol Turc 39(4): p.300-306.
  • 9.Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. (2008): Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A Long-term histomorphometric study in minipigs. J. Biomed Mater Res B Appl Biomater. 90(1): p.171-181
  • 10.Tezulaş E, Özkan CD. (2008): Decontamination of autogenous bone grafts collected from dental implant sites via osteotomy: review, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 106: p.679-684
  • 11.Alfaro FH. (2006): Bone Grafting in Oral Implantology Techniques and Clinical Applications. Quintessence Publishing Co Ltd. UK.
  • 12.Kahnberg KE. (2005): Bone grafting Techniques for Maxillary Implants. Blackwell Munksgaard, Blackwell Publishing. Sweeden, p.2-11.
  • 13.Becker W, Urist M, Becker BE. (1998): Clinical and histological observation of sites implanted with intraoral autologous bone grafts or allografts. 15 human case reports. J Periodontol. 67: p.1025-1033.
  • 14.Rokn AR, Khodadoostan MA, Ghahroudi AAR, Motahhary P, Fard MJK, Bruyn HD, Afzalifar R, Soolar E, Soolari A. (2011): Bone formation with two types of grafting materials: a histologic and histomorphometric study. Open Dent J. (5): p.96-104
  • 15.Wolfe MW, Salkeld SL, Cook SD. (1998): Bone Morphogenetic Proteins in the treatment of non unions and bone defects: historical perspective and current knowledge. J Orthop Trauma 12(6): p.407-412
  • 16.bafiarir ve ark .çapraz enfeksiyonlar ve kontrolü 2005.
  • 17.Kohler R, Lorge F, Brunat-Mentigny M, Noyer D, Patricot L. (1990): Massive bone allografts in children. Int Orthop. 14(3): p.249-253
  • 18.Loty B, Courpied JP, Tomeno B, Postel M, Forest M, Abelanet R. (1990): Bone allografts sterilised by irradiation. Biological properties, procurement and results of 150 massive allografts. Int Orthop. 14(3): p.237-242.
  • 19.Salkeld SL, Patron LP, Barrack RL, Cook SD. (2001): The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. J Bone Joint Surg Am.83-A (6):p.803-816.
  • 20.Delloye C, Verhelpen M, d'Hemricourt J, Govaerts B, Bourgois R. (1992): Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects. Clin Orthop Relat Res. (282): p.273-292.
  • 21.Glowacki J, Altobelli D, Mulliken JB. (1981): Fate of mineralized and demineralized osseous implants in cranial defects. Calcif Tissue Int. 33(1): p.71-76.
  • 22.Klinge B, Alberius P, Isaksson S, Jönsson J. (1992): Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg. 50(3): p.241-249.
  • 23.Kübler N, Reuther J, Kirchner T, Priessnitz B, Sebald W. (1993): Osteoinductive, morphologic, and biomechanical properties of autolyzed, antigen-extracted, allogeneic human bone. J Oral Maxillofac Surg. 51(12): p.1346-1357.
  • 24.Tuskan C, Yaltırık M. Oral ve Maksillofasiyal Cerrahide Kullanılan Biyomateryaller. İ.Ü. Basım ve Yayınevi Müdürlüğü, İstanbul. 2002; p.19-26.
  • 25.Berglundh T, Lindhe J. (1997): Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res. 8(2): p.117-124
  • 26.Peetz M. (1997): Characterization of xenogenic bone material. In: Boyne PJ, Evensen L. Eds. Osseous reconstruction of the maxilla and the mandible: surgical techniques using titanium mesh and bone mineral, Carol Stream: Quintessence Publishing: p.87–100.
  • 27.Timoçin N, Kaynar A, Öztürk S, Sungur A, Demiryont M. (1993): Biocoral Uygulanan Kemik Defektlerinde İyileşmenin Radyonüklit ve Histopatolojik Yöntemlerle İncelenmesi. İ.Ü. Diş Hekimliği Fakültesi Dergisi, 3: p.173-178.
  • 28.Rabie AB, Wong RW, Hagg U. (2000): Composite autogenous bone and demineralized bone matrices used to repair defects in the parietal bone of rabbits. British J Oral Maxillofac Surg. 38(5): p.565-570.
  • 29.Redondo LM, Verrier Hernández A, García Cantera JM, Torres Nieto MA, Vaquero Puerta C. (1997): Repair of experimental mandibular defects in rats with autogenous, demineralised, frozen and fresh bone. British J Oral Maxillofac Surg. 35(3): p.166-169.
  • 30.Block MS, Kent JN, Ardoin RC, Davenport W. (1987): Mandibular augmentation in dogs with hydroxylapatite combined with demineralized bone. J Oral Maxillofac Surg. 45(5): p.414-420.
  • 31.Bauer TW, Muschler GF. (2000): Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. (371): p.10-27.
  • 32.Merten ve ark. 2003,
  • 33.zijdervart 2005
  • 34.Al Ruhaimi KA. (2001): Bone graft substitutes: A comparative qualitative histologic review of current osteoconductive grafting materials. Int J Oral Maxillofac Implants. 16(1): p.105-114.
  • 35.Younger EM, Chapman MW. (1989): Morbidity at bone graft donor sites. J. Orthop. Trauma. 3(3): p.192-195.
  • 36.Efeoğlu E, Sandallı P. (1996): A 14-year follow-up study of localized juvenile periodontitis treated by scaling and root planing, systemic metronidazole, and subgingival curettage: a case report. Periodontal Clin Investig. 18(2): p. 6-12.
  • 37.Colnot C, Romero DM, Huang S, Helms JA. (2005): Mechanisms of action of demineralized bone matrix in the repair of cortical bone defects. Clin Orthop Relat Res. (435): p.69-78.38.Eryılmaz AT. (2008): Demineralize kemik matriksinin farklı doku planlarında histolojik davranışının değerlendirilmesi. Uzmanlık Tezi, Gazi Üniversitesi Tıp Fakültesi Plastik, Rekonstrüktif ve Estetik Cerrahi ABD, Ankara, p.79.
  • 39.Lee C, Antonyshyn OM, Forrest CR. (1995): Cranioplasty: indications, technique, and early results of autogenous split skull cranial vault reconstruction. J Craniomaxillofac Surg. 23(3): p.133-142.
  • 40.becker 1998
  • 41.Kruyt MC, Dhert WJ, Oner C. (2004): Osteogenicity of autologous bone transplants in the goat. Transplantation 77: p.504-509.
  • 42.Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. (2008): Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29(9):p.1177-1188.
  • 43.Gerressen M, Hermanns-Sachweh B, Riediger D, Hilgers RD, Spiekermann H, Ghassemi A. (2009): Purely cancellous vs. corticocancellous bone in sinus floor augmentation with autogenous iliac crest: a prospective clinical trial. Clinical Oral Implants Research 20(2): p.109-115.
  • 44.Younger EM, Chapman MW. (1989): Morbidity at bone graft donor sites. J. Orthop. Trauma. 3(3): p.192-195.
  • 45.Banwart JC, Asher MA, Hassanein RS. (1995): Iliac crest bone graft harvest donor site morbidity. A statistical evaluation Spine (Phila Pa 1976). 20(9): p.1055-1060.
  • 46.Gupta AR, Shah NR, Patel TC, Grauer JN. (2001): Perioperative and long-term complications of iliac crest bone graft harvesting for spinal surgery: a quantitative review of the literature. Int Med Journal Vol. 8(3): p.163–166.
  • 47.Einhorn TA, Lee CA. (2001): Bone regeneration: new findings and potential clinical applications. J Am Acad Orthop Surg. 9(3): p.157-165.
  • 48.St John TA, Vaccaro AR, Sah AP, Schaefer M, Berta SC, Albert T, Hilibrand A. (2003): Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop (Belle Mead NJ) 32(1): p.18-23.
  • 49.mokbel ve ark 2008
  • 50.Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. (2009): Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg. 38(4): p.356-362.
  • 51.Shand JM, Heggie AA, Holmes AD, Holmes W. (2002): Allogeneic bone grafting of calvarial defects: an experimental study in the rabbit. Int J Oral Maxillofac Surg. (5): p.525-531.
  • 52.Athanasiou VT, Papachristou DJ, Panagopoulos A, Saridis A, Scopa CD, Megas P (2010): Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med Sci Monit. 16(1): p.24-31.
There are 51 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Research Articles
Authors

Turgay Peyami Hocaoğlu 0000-0002-0281-8928

Sadık Gençoğlan 0000-0001-6902-6653

Murat Arslan 0000-0003-1408-9168

M. Emre Benlidayı

Mehmet Kürkçü

Publication Date December 30, 2018
Submission Date October 28, 2018
Published in Issue Year 2018

Cite

EndNote Hocaoğlu TP, Gençoğlan S, Arslan M, Benlidayı ME, Kürkçü M (December 1, 2018) Histomorphometric Assessment of the Impact of Bovine Demineralized Bone Graft on Bone Healing Versus Autogenous, Allogeneic and Synthetic Grafts in Experimentally- Induced Critical Size Bone Defects in Rats. Cumhuriyet Dental Journal 21 4 387–395.

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.