Derleme
BibTex RIS Kaynak Göster

REMINERALIZATION AGENTS AND CARIES PREVENTIVE AGENTS USED IN DENTISTRY

Yıl 2014, 2014: Supplement 9, 113 - 125, 11.02.2015
https://doi.org/10.17567/dfd.94552

Öz

Dental caries is a major public health problem in most countries. For this purpose, the focus in caries research has recently shifted to prevention of dental caries and remineralization of incipient carious. Although dental caries is a disease characterized progressive manner, it can be stopped at an early stage and can be remineralized before a cavitation ocur. There are several remineralization agents and caries preventive agents used in dental practice, such as ionic technologes, bioactive agents, sugar alcohols, herbal agents and calcium-phosphate based materials. In this review, the informations about caries preventive agents and remineralization agents were examined and aimed to explain the studies on this subjects

Kaynakça

  • Goswami M, Saha S, Chaitra TR. Latest developments in nonfluoridated remineralizing technologies. J Indian Soc Pedod Prev Dent 2012;30:2-6.
  • Lundeen T.F, Roberson T.M. Cariology: the lesion, etiology, prevention, and control. The Art and Science of Operative Dentistry. Third edition. s. 60- 128, Mosby, Missouri,1995
  • Featherstone JDB. Remineralization, the Natural Caries Repair Process—The Need for New Approaches. Adv Dent Res 2009;21:4-7.
  • Featherstone JD. The science and practice of caries prevention. J Am Dent Assoc 2000;131:887–99.
  • Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res 2010;89:1187-97.
  • Longbottom C, Ekstrand K, Zero D, Kambara M. Novel preventive treatment options. Monogr Oral Sci. 2009;21:156-63.
  • Moi GP, Tenuta LM, Cury JA. Anticaries potential of a fluoride mouthrinse evaluated in vitro by validated protocols. Braz Dent J 2008;19:91-6.
  • Groeneveld A, Van Eck AA, Backer Dirks O. Fluoride in caries prevention: is the effect pre- or post-eruptive? J Dent Res 1990;69:751–5.
  • Nalbantgil D, Oztoprak MO, Cakan DG, Bozkurt K, Arun T. Prevention of demineralization around orthodontic brackets using two different fluoride varnishes. Eur J Dent 2013;7:41-7
  • Alsaffar A, Tantbirojn D, Versluis A, S. Beiraghi. Protective effect of pit and fissure sealants on demineralization of adjacent enamel. Pediatr Dent 2011;33:491-5.
  • Rodrigues E, Delbem AC, Pedrini D, Cavassan L. Enamel remineralization by fluoride-releasing materials: proposal of a pH-cycling model. Braz Dent J 2010;21:446-51.
  • Chu CH, Edward CM. Microhardness of dentine in primary teeth after topical fluoride applications. J Dent 2008;36:387-91
  • Calvo AF, Tabchoury CP, Del Bel Cury AA, Tenuta LM, da Silva WJ, Cury JA. Effect of acidulated phosphate fluoride gel application time on enamel demineralization of deciduous and permanent teeth. Caries Res 2012;46:31-7.
  • Peng JJ, Botelho MG, Matinlinna JP. Silver compounds used in dentistry for caries management: a review. J Dent 2012;40:531-41
  • Zhi QH, Lo EC, Kwok AC. An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine. Aust Dent J 2013 Mar;58:50-6.
  • Mei ML, Li QL, Chu CH, Lo EC, Samaranayake LP. Antibacterial effects of silver diamine fluoride onmulti-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob. 2013 Feb 26;12:4.
  • Cheng L, Zhang K, Weir MD, Liu H,Zhou X, Hockin H. Effects of antibacterial primers with quaternary ammonium and nano-silver on S. mutans impregnated in human dentin blocks. Dent Mater 2013;29:462–72
  • Zhang K, Li F, Imazato S, Cheng L, Liu H. Dual antibacterial agents of nano-silver and 12- methacryloyloxydodecylpyridinium dental adhesive to inhibit caries. J Biomed Mater Res B Appl BioMater 2013;101:929-38 in
  • Pecharki GD, Cury JA, · Paes Leme AF, Tabchoury CPM, - Del Bel Cury AA, Rosalen PL, Bowen WH. Effect of Sucrose Containing Iron (II) on Dental Biofilm and Enamel Demineralization in situ. Caries Res 2005;39:123–9
  • Devulapalle KS, Mooser G. Glucosyltransferase inactivationreduces dental caries. J Dent Res 2001;80:466–9.
  • Rosalen PL, Pearson SK, Bowen WH. Effects of iron and fluoride co-crystallized with sugar on cariesdevelopment and acid formation in desaliated rats. ArchOral Biol 1996;41:1003–10.
  • Martinhon CC, Italiani Fde M, Padilha Pde M, Bijella MF, Delbem AC, Buzalaf MA. Effect of iron on bovine enamel and on the composition of the dental biofilm formed in situ. Arch Oral Biol 2006;51:471-5
  • Alves KM, Franco KS, Sassaki KT, Buzalaf MA, Delbem AC. Effect of iron on enamel demineralization and remineralization in vitro. Arch Oral Biol 2011;56:1192-8.
  • Hidaka S, Okamoto Y, Abe K, Miyazaki K. Effects of indium and iron ions on in vitro calcium phosphate precipitationand crystallinity. J Biomed Mater Res 1996;31:11–8
  • Guggenbuhl P, Filmon R, Mabilleau G, Basle´ MF, Chappard D. Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism 2008;57:903–10.
  • Hedberg M, Hasslof P, Sjostrom I, Twetman S, Stecksen-Blicks C. Sugar fermentation in probiotic bacteria- an in vitro study. Oral Microbiol Immunol 2008;23:482-5.
  • Makinen KK, Saag M, Isotupa KP, Olak J, Nõmmela R, Söderling E, et al. Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res 2005;39:207–15.
  • Balakrishnan M, Simmonds RS, Tagg JR. Dental caries is a preventable infectious disease. Aust Dent J 2000;45:235–45.
  • Söderling E, Isokangas P, Pienihäkkinen K, Tenovuo J Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. J Dent Res 2000;79:882-7.
  • Loesche WJ The effect of sugar alcohols on plaque and saliva level of Streptococcus mutans. Swed Dent J 1984;8:125-35.
  • Bradshaw DJ, Marsh PD. Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat. Caries Res 1994;28:251-6.
  • Gaffar A, Blake-Haskins JC, Sullivan R, Simone A, Schmidt R, Saunders F. Cariostatic effects of a xylitol/NaF dentifrice in vivo. Int Dent J 1998;48:32-9.
  • Van der Hoeven JS. Cariogenicity of disaccharide alcohols inrats. Caries Res 1980;14:61–6
  • Imfeld TN. Non-nutritive sweeteners, sugar
  • andconfectionery substitutes,
  • Identification of low caries risk dietarycomponents.
  • Karger, Basel 1983, pp 117–4 products. In:
  • Takatsuka T, Exterkate RA, ten Cate JM. Effects of Isomalt on enamel de- and remineralization, a combined in vitro pH-cycling model and in situ study. Clin Oral Investig. 2008;12:173-7
  • Hayes ML, Roberts KR. The breakdown of glucose, xylitol and other sugar alcohols by humandental plaque bacteria. Arch Oral Biol 1978;23:445–51.
  • Birkhed D, Edwardsson S, Kalfas S, Svensater G. Cariogenicity of sorbitol. Swed Dent J1984;8:147– 54.
  • Splieth CH, Alkilzy M, Schmitt J, Berndt C, Welk A. Effect ox xylitol and sorbitol on plaque acidogenesis. Quintess Int; 2009;40:279-85
  • Thorild I, Libndou B, Twetman S. Caries in 4-year- old children after maternal chewing of gums containing combinations of xylitol, sorbitol, chlorhexidine and fluoride. Eur Arch Paediatr Dent 2006;7:241-5
  • Shibasaki K, Sano H, Matsukubo T, Takaesu Y. Effects oflow molecular chitosan on pH changes in human dentalplaque. Bull Tokyo Dent Coll 1994;35:33–9.
  • Hayashi Y, Ohara N, Ganno T, Yamaguchi K, Ishizaki T, Nakamura T, Sato M. Chewing chitosan- containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 2007;52:290-4
  • Uysal T, Akkurt MD, Amasyali M, Ozcan S, Yagci A, Basak F, Sagdic D. Does a chitosan-containing dentifrice orthodontic brackets? Angle Orthod 2011;81:319- 25. around
  • Arnaud TM, de Barros Neto B, Diniz FB.Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dent 2010;38:848-52
  • Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G,Varaldo PE. Antimicrobial properties of N- carboxybutylchitosan. Chemother. 1990;34:2019–23. Antimicrob Agents
  • Fujiwara M, Hayashi Y, Ohara N. Inhibitory effect of watersoluble Streptococcus mutans. NewMicrobiol 2004;27:83– 6. on growth of
  • Bae K, Jun EJ, Lee SM, Paik DI, Kim JB. Effect of watersolublereduced chitosan on Streptococcus mutans, plaqueregrowth and biofilm vitality. Clin Oral Investig. 2006;10:102–7.
  • Huang S, Gao S, Cheng L, Yu H. Combined effects of nano-hydroxyapatite and Galla chinensis on remineralisation of initial enamel lesion in vitro. J Dent 2010;38:811-9.
  • Chu JP, Li JY, Hao YQ, Zhou XD. Effect of compounds of Gallachinensis on remineralization of initial enamel cariouslesions in vitro. J Dent 2007;35:383–7.
  • .Cheng L, Li JY, Huang S, Zhou XD. Effect of Galla chinensis on enhancing remineralization of enamel crystals. Biomed Mater 2009;4:034103
  • Xie Q, Li JY, Zuo YL, Zhou XD. Hua Xi Kou Qiang Yi Xue Za Zhi. The effect of galla chinensis on the growth of cariogenic bacteria in vitro. West China Journal of Stomatology 2005;23:82-4
  • Huang X, Cheng L, Exterkate RA, Liu M, Zhou X, Li J, ten Cate JM. Effect of pH on Galla chinensis extract's stability and anti-caries properties in vitro. Arch Oral Biol 2012;57:1093-9.
  • Amaechi BT, Porteous N, Ramalingam K, Mensinkai PK, Ccahuana Vasquez RA, Sadeghpour A, Nakamoto T. Remineralization of Artificial Enamel Lesions by Theobromine. Caries Res 2013;47:399- 405.
  • Kargül B, Özcan M, Peker S, Nakamoto T, Sim- mons WB, Falster AU: Evaluation of human enamel surfaces treated with theobromine: a pilot study. Oral Health Prev Dent 2012; 10:275–82.
  • Nakamoto T, Simmons WB Jr, Falster AU:
  • Apatite-Forming Productsof Patentapplication
  • 19http://patft.uspto.gov/netacgi/nph
  • Parser?Sect2 = PTO1&Sect2 = HITOFF&p = 1&u =
  • /netahtml/PTO/search-bool.html&r = 1&f =G&l =
  • 50&d = PALL&RefSrch = yes&Query =PN/5919426
  • Nakamoto T, Simmons WB Jr, Falster AU: Apatite- Forming Systems: Methods and Products.US Patent application number: US 6,183,711B1; 2001. http://patft.uspto.gov/netacgi/nph-Parser?Sect2 = PTO1&Sect2 /netahtml/PTO/search-bool.html&r =1&f = G&l = 50&d = PALL&RefSrch = yes&-Query = PN/6183711. =1&u =
  • Ceyhan T, Günay V, Çapoğlu A, Sayrak H,Karaca Ç. Production and characterization of a glass- ceramic biomaterial and in vitro and in vivo evaluation of its biological effects. Acta Orthop Traumatol Turc 2007;41:307-13.
  • Hassanein OE, El-Brolossy TA. An investigation about the remineralization potential of bio-active glass on artificially carious enamel and dentin using Raman spectroscopy. Egypt J Solids 2006;29:69- 80.
  • Forsback AP, Areva S, Salonen JI. Mineralization of dentin induced by treatment with bioactive glass S53P4 in-vitro. Acta Odont Scand 2004;62:14-20.
  • Burwell AK, Litkowski LJ, Greenspan DC. Calcium sodium phosphosilicate (NovaMin): remineralization potential. Adv Dent Res 2009;21:35-9.
  • Vahid Golpayegani M, Sohrabi A, Biria M, Ansari G. Remineralization Effect of Topical NovaMin Versus Sodium Fluoride (1.1%) on Caries-Like Lesions in Permanent Teeth. J Dent 2012;9:68-75.
  • Diamanti I, Koletsi-Kounari H, Mamai-Homata E, Vougiouklakis G. In vitro evaluation of fluoride and calcium sodium phosphosilicate toothpastes, on root dentine caries lesions.J Dent 2011;39:619-28.
  • Prabhakar AR, Arali V. Comparison of the remineralizing effects of sodium fluoride and bioactive glass using bioerodible gel systems. J Dent Res Dent Clin Dent Prospects. 2009;3:117-21.
  • Yli-Urpo H, Närhi T, Söderling E. Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral micro-organisms in vitro. Acta Odontol Scand. 2003;6:241-6.
  • Chiang YC, Chen HJ, Liu HC, Kang SH, Lee BS, Lin FH, Lin HP, Lin CP. A novel mesoporous biomaterial for treating dentin hypersensitivity. J Dent Res 2010;89:236-40.
  • Wang Y, Li X, Chang J, Wu C, Deng Y. Effect of tricalcium silicate (Ca(3)SiO(5)) bioactive material on reducing enamel demineralization: an in vitro pH-cycling study. J Dent 2012;40:1119-26.
  • Dong Z, Chang J, Deng Y, Joiner A. Tricalcium silicate induced mineralization for occlusion of dentinal tubules. Aust Dent J 2011;56:175-80.
  • Onuma K, Yamagishi K, Oyane A: Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J Cryst Growth 2005;282:199–207.
  • Lee JJ, Lee YK, Choi BJ, Lee JH, Choi HJ, Son HK, Hwang JW, Kim SO. Physical properties of resin- reinforced glass ionomer cement modified with micro and nano-hydroxyapatite. J Nanosci Nanotechnol. 2010;10:5270-6.
  • Huang Sb, Gao SS, Yu HY, Effect of nano- hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater 2009;4:55-9.
  • Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano- hydroxyapatitetoothpastes. J Dent 2011;6:430-7
  • Huang S, Gao S, Cheng L, Yu H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res 2011;45:460- 8.
  • Swarup JS, Rao A. Enamel surface reminerali- zation: Using synthetic nanohydroxyapatite. Contemp Clin Dent 2012;3:433-6.
  • Çelik EU, Yazkan B, Katırcı G. Başlangıç çürük lezyonlarının tedavisi. Atatürk Üniv Dis Hek Fak Derg. 2011;1:48-56
  • Reynolds EC, Cai F, Shen P, Walker GD. Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar- free chewing gum. J Dent Res 2003;82:206–11.
  • Rahiotis C, Vougiouklakis G. Effect of a CPP-ACP agent on the demineralization and remineralization of dentine in vitro. J Dent 2007;35:695-8.
  • Reynolds EC, Cain CJ, Webber FL. Anticariogenecity of calcium phosphate complexes of tryptic casein phosphopeptides in the rat. J Dent Res 1995;74:1272-9
  • Cochrane NJ, Saranathan S, Cai F, Cross KJ, Reynolds EJ Enamel subsurface remineralization with casein phosphopeptides stabilized solution of calcium, phosphate and fluorid. Caries Res 2008;42:88-97
  • Karlinsey RL. US Provisional patent 20070178220. Materials and methods for manufacturing amorphous tricalcium phosphate and metal oxide alloys of amorphous tricalcium phosphate and methods of using the same
  • Karlinsey RL, Mackey AC. Solid-state preparation and dental bapplication of an organically modified calcium phosphate. J Material Sci.2009;44:346-349
  • Vogel GL, Zhang Z, Carey CM, Ly A, Chow LC, Proskin HM. Composition of plaque and saliva following a sucrose challenge and use of an alpha- tricalcium-phosphate-containing chewing gum. J Dent Res 1998;77:518-24.
  • Brunton PA, Davies RP, Burke JL, Smith A, Aggeli A, Brookes SJ, Kirkham J. Treatment of early caries lesions using biomimetic self-assembling peptides - a clinical safety trial. Br Dent J 2013;215:E6.
  • Sullivan RJ, Charig A, Blake-Haskins J, Zhang YP, Miller SM, Strannick M, Gaffar A, Margolis HC. In vivo detection of calcium from dicalcium phosphate dihydrate dentifrices in demineralized human enamel and plaque. Adv Dent Res 1997;11:380-7.
  • Wefel JS, Harless JD. The use of saturated DCPD in remineralization of artificial caries lesions in vitro. J Dent Res 1987;66:1640-3.
  • Zhang YP, Din CS, Miller S, Nathoo SA, Gaffar A. Intraoral remineralization of enamel with a MFP/DCPD and MFP/ silica dentifrice using surface microhardness. J Clin Dent 1995;6:148-53.
  • Kitasako Y, Tanaka M, Sadr A, Hamba H, Ikeda M, Tagami J. Effects of a chewing gum containing phosphoryloligosaccharides of calcium (POs-Ca) and fluoride onremineralization and crystallization of enamel subsurfacelesions in situ. J Dent 2011;39:771-9
  • To-o K, Kamasaka H, Nishimura T, Kuriki T, Saeki S,Nakabou Y. Absorbability of calcium from calcium-boundphosphoryl comparison with that from various calcium compounds in the rat ligated jejunum loop. Bioscience 2003;67:1713–8.
  • oligosaccharides in Biotechnology and Biochemistry
  • Duke SA. Effect induced by a chalk-based toothpaste on the pH changes of plaque challenged by a high sugar diet over an8-hour period.Caries Res 1986;20:381-4.
  • Cury JA, Simões GS, Del Bel Cury AA, Gonçalves NC, Tabchoury CP. Effect of a calcium carbonate- based dentifrice on in situ enamel remineralization. Caries Res 2005;39:255-7.
  • Curry JA, Francisco SB, Simões GS, Del Bel Cury AA, Tabchoury CPM: Effect of a calcium car- bonate-based dentifrice on enamel demineral- ization in situ. Caries Res 2003;37:194–9.
  • Danelon M, Takeshita EM, Sassaki KT, Delbem AC. In situ evaluation of a low fluoride concentration gel with sodium trimetaphosphate in enamel remineralization. Am J Dent 2013 Feb;26:15-20.
  • Finn SB, Frew RA, Leibowitz R, Morse W, Man-son- Hing L, Brunelle J: The effect of sodium trimetaphosphate (TMP) as a chewing gum additive on caries increments in children. J Am Dent Assoc 1978;96:651–5.
  • O’Mullane DM, Kavanagh D, Ellwood RP, Chesters RK, Schafer F, Huntington E, Jones PR: A three- year clinical trial of a combination of trimetaphosphate and sodium fluoride in silica toothpaste. J Dent Res 1997;76:1776–81.

DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR

Yıl 2014, 2014: Supplement 9, 113 - 125, 11.02.2015
https://doi.org/10.17567/dfd.94552

Öz

Diş çürükleri birçok ülkede önemli bir halk sağlığı sorunudur. Bu nedenle çürük çalışmalarının odak noktası diş çürüğünün önlenmesi ve başlangıç çürüklerinin remineralizasyonuna doğru yönelmiştir. Her ne kadar diş çürüğü ilerleyici tarzda seyir gösteren bir hastalık olsa da, erken aşamada durdurulabilir ve kavitasyon oluşmadan remineralize edilebilir niteliktedir. Klinik uygulamalarda; iyon teknolojileri, biyoaktif ajanlar, şeker alkolleri, bitkisel ajanlar ve kalsiyum fosfat kaynaklı ajanlar gibi birçok remineralizasyon ajanı ve çürük önleyici ajan kullanılmaktadır. Bu derlemede çürük önleyici ajanlar ve remineralizasyon ajanları hakkındaki bilgiler incelenmiş ve konu ile ilgili çalışmaların açıklanması amaçlanmıştır.

Kaynakça

  • Goswami M, Saha S, Chaitra TR. Latest developments in nonfluoridated remineralizing technologies. J Indian Soc Pedod Prev Dent 2012;30:2-6.
  • Lundeen T.F, Roberson T.M. Cariology: the lesion, etiology, prevention, and control. The Art and Science of Operative Dentistry. Third edition. s. 60- 128, Mosby, Missouri,1995
  • Featherstone JDB. Remineralization, the Natural Caries Repair Process—The Need for New Approaches. Adv Dent Res 2009;21:4-7.
  • Featherstone JD. The science and practice of caries prevention. J Am Dent Assoc 2000;131:887–99.
  • Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res 2010;89:1187-97.
  • Longbottom C, Ekstrand K, Zero D, Kambara M. Novel preventive treatment options. Monogr Oral Sci. 2009;21:156-63.
  • Moi GP, Tenuta LM, Cury JA. Anticaries potential of a fluoride mouthrinse evaluated in vitro by validated protocols. Braz Dent J 2008;19:91-6.
  • Groeneveld A, Van Eck AA, Backer Dirks O. Fluoride in caries prevention: is the effect pre- or post-eruptive? J Dent Res 1990;69:751–5.
  • Nalbantgil D, Oztoprak MO, Cakan DG, Bozkurt K, Arun T. Prevention of demineralization around orthodontic brackets using two different fluoride varnishes. Eur J Dent 2013;7:41-7
  • Alsaffar A, Tantbirojn D, Versluis A, S. Beiraghi. Protective effect of pit and fissure sealants on demineralization of adjacent enamel. Pediatr Dent 2011;33:491-5.
  • Rodrigues E, Delbem AC, Pedrini D, Cavassan L. Enamel remineralization by fluoride-releasing materials: proposal of a pH-cycling model. Braz Dent J 2010;21:446-51.
  • Chu CH, Edward CM. Microhardness of dentine in primary teeth after topical fluoride applications. J Dent 2008;36:387-91
  • Calvo AF, Tabchoury CP, Del Bel Cury AA, Tenuta LM, da Silva WJ, Cury JA. Effect of acidulated phosphate fluoride gel application time on enamel demineralization of deciduous and permanent teeth. Caries Res 2012;46:31-7.
  • Peng JJ, Botelho MG, Matinlinna JP. Silver compounds used in dentistry for caries management: a review. J Dent 2012;40:531-41
  • Zhi QH, Lo EC, Kwok AC. An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine. Aust Dent J 2013 Mar;58:50-6.
  • Mei ML, Li QL, Chu CH, Lo EC, Samaranayake LP. Antibacterial effects of silver diamine fluoride onmulti-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob. 2013 Feb 26;12:4.
  • Cheng L, Zhang K, Weir MD, Liu H,Zhou X, Hockin H. Effects of antibacterial primers with quaternary ammonium and nano-silver on S. mutans impregnated in human dentin blocks. Dent Mater 2013;29:462–72
  • Zhang K, Li F, Imazato S, Cheng L, Liu H. Dual antibacterial agents of nano-silver and 12- methacryloyloxydodecylpyridinium dental adhesive to inhibit caries. J Biomed Mater Res B Appl BioMater 2013;101:929-38 in
  • Pecharki GD, Cury JA, · Paes Leme AF, Tabchoury CPM, - Del Bel Cury AA, Rosalen PL, Bowen WH. Effect of Sucrose Containing Iron (II) on Dental Biofilm and Enamel Demineralization in situ. Caries Res 2005;39:123–9
  • Devulapalle KS, Mooser G. Glucosyltransferase inactivationreduces dental caries. J Dent Res 2001;80:466–9.
  • Rosalen PL, Pearson SK, Bowen WH. Effects of iron and fluoride co-crystallized with sugar on cariesdevelopment and acid formation in desaliated rats. ArchOral Biol 1996;41:1003–10.
  • Martinhon CC, Italiani Fde M, Padilha Pde M, Bijella MF, Delbem AC, Buzalaf MA. Effect of iron on bovine enamel and on the composition of the dental biofilm formed in situ. Arch Oral Biol 2006;51:471-5
  • Alves KM, Franco KS, Sassaki KT, Buzalaf MA, Delbem AC. Effect of iron on enamel demineralization and remineralization in vitro. Arch Oral Biol 2011;56:1192-8.
  • Hidaka S, Okamoto Y, Abe K, Miyazaki K. Effects of indium and iron ions on in vitro calcium phosphate precipitationand crystallinity. J Biomed Mater Res 1996;31:11–8
  • Guggenbuhl P, Filmon R, Mabilleau G, Basle´ MF, Chappard D. Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism 2008;57:903–10.
  • Hedberg M, Hasslof P, Sjostrom I, Twetman S, Stecksen-Blicks C. Sugar fermentation in probiotic bacteria- an in vitro study. Oral Microbiol Immunol 2008;23:482-5.
  • Makinen KK, Saag M, Isotupa KP, Olak J, Nõmmela R, Söderling E, et al. Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res 2005;39:207–15.
  • Balakrishnan M, Simmonds RS, Tagg JR. Dental caries is a preventable infectious disease. Aust Dent J 2000;45:235–45.
  • Söderling E, Isokangas P, Pienihäkkinen K, Tenovuo J Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. J Dent Res 2000;79:882-7.
  • Loesche WJ The effect of sugar alcohols on plaque and saliva level of Streptococcus mutans. Swed Dent J 1984;8:125-35.
  • Bradshaw DJ, Marsh PD. Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat. Caries Res 1994;28:251-6.
  • Gaffar A, Blake-Haskins JC, Sullivan R, Simone A, Schmidt R, Saunders F. Cariostatic effects of a xylitol/NaF dentifrice in vivo. Int Dent J 1998;48:32-9.
  • Van der Hoeven JS. Cariogenicity of disaccharide alcohols inrats. Caries Res 1980;14:61–6
  • Imfeld TN. Non-nutritive sweeteners, sugar
  • andconfectionery substitutes,
  • Identification of low caries risk dietarycomponents.
  • Karger, Basel 1983, pp 117–4 products. In:
  • Takatsuka T, Exterkate RA, ten Cate JM. Effects of Isomalt on enamel de- and remineralization, a combined in vitro pH-cycling model and in situ study. Clin Oral Investig. 2008;12:173-7
  • Hayes ML, Roberts KR. The breakdown of glucose, xylitol and other sugar alcohols by humandental plaque bacteria. Arch Oral Biol 1978;23:445–51.
  • Birkhed D, Edwardsson S, Kalfas S, Svensater G. Cariogenicity of sorbitol. Swed Dent J1984;8:147– 54.
  • Splieth CH, Alkilzy M, Schmitt J, Berndt C, Welk A. Effect ox xylitol and sorbitol on plaque acidogenesis. Quintess Int; 2009;40:279-85
  • Thorild I, Libndou B, Twetman S. Caries in 4-year- old children after maternal chewing of gums containing combinations of xylitol, sorbitol, chlorhexidine and fluoride. Eur Arch Paediatr Dent 2006;7:241-5
  • Shibasaki K, Sano H, Matsukubo T, Takaesu Y. Effects oflow molecular chitosan on pH changes in human dentalplaque. Bull Tokyo Dent Coll 1994;35:33–9.
  • Hayashi Y, Ohara N, Ganno T, Yamaguchi K, Ishizaki T, Nakamura T, Sato M. Chewing chitosan- containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 2007;52:290-4
  • Uysal T, Akkurt MD, Amasyali M, Ozcan S, Yagci A, Basak F, Sagdic D. Does a chitosan-containing dentifrice orthodontic brackets? Angle Orthod 2011;81:319- 25. around
  • Arnaud TM, de Barros Neto B, Diniz FB.Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dent 2010;38:848-52
  • Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G,Varaldo PE. Antimicrobial properties of N- carboxybutylchitosan. Chemother. 1990;34:2019–23. Antimicrob Agents
  • Fujiwara M, Hayashi Y, Ohara N. Inhibitory effect of watersoluble Streptococcus mutans. NewMicrobiol 2004;27:83– 6. on growth of
  • Bae K, Jun EJ, Lee SM, Paik DI, Kim JB. Effect of watersolublereduced chitosan on Streptococcus mutans, plaqueregrowth and biofilm vitality. Clin Oral Investig. 2006;10:102–7.
  • Huang S, Gao S, Cheng L, Yu H. Combined effects of nano-hydroxyapatite and Galla chinensis on remineralisation of initial enamel lesion in vitro. J Dent 2010;38:811-9.
  • Chu JP, Li JY, Hao YQ, Zhou XD. Effect of compounds of Gallachinensis on remineralization of initial enamel cariouslesions in vitro. J Dent 2007;35:383–7.
  • .Cheng L, Li JY, Huang S, Zhou XD. Effect of Galla chinensis on enhancing remineralization of enamel crystals. Biomed Mater 2009;4:034103
  • Xie Q, Li JY, Zuo YL, Zhou XD. Hua Xi Kou Qiang Yi Xue Za Zhi. The effect of galla chinensis on the growth of cariogenic bacteria in vitro. West China Journal of Stomatology 2005;23:82-4
  • Huang X, Cheng L, Exterkate RA, Liu M, Zhou X, Li J, ten Cate JM. Effect of pH on Galla chinensis extract's stability and anti-caries properties in vitro. Arch Oral Biol 2012;57:1093-9.
  • Amaechi BT, Porteous N, Ramalingam K, Mensinkai PK, Ccahuana Vasquez RA, Sadeghpour A, Nakamoto T. Remineralization of Artificial Enamel Lesions by Theobromine. Caries Res 2013;47:399- 405.
  • Kargül B, Özcan M, Peker S, Nakamoto T, Sim- mons WB, Falster AU: Evaluation of human enamel surfaces treated with theobromine: a pilot study. Oral Health Prev Dent 2012; 10:275–82.
  • Nakamoto T, Simmons WB Jr, Falster AU:
  • Apatite-Forming Productsof Patentapplication
  • 19http://patft.uspto.gov/netacgi/nph
  • Parser?Sect2 = PTO1&Sect2 = HITOFF&p = 1&u =
  • /netahtml/PTO/search-bool.html&r = 1&f =G&l =
  • 50&d = PALL&RefSrch = yes&Query =PN/5919426
  • Nakamoto T, Simmons WB Jr, Falster AU: Apatite- Forming Systems: Methods and Products.US Patent application number: US 6,183,711B1; 2001. http://patft.uspto.gov/netacgi/nph-Parser?Sect2 = PTO1&Sect2 /netahtml/PTO/search-bool.html&r =1&f = G&l = 50&d = PALL&RefSrch = yes&-Query = PN/6183711. =1&u =
  • Ceyhan T, Günay V, Çapoğlu A, Sayrak H,Karaca Ç. Production and characterization of a glass- ceramic biomaterial and in vitro and in vivo evaluation of its biological effects. Acta Orthop Traumatol Turc 2007;41:307-13.
  • Hassanein OE, El-Brolossy TA. An investigation about the remineralization potential of bio-active glass on artificially carious enamel and dentin using Raman spectroscopy. Egypt J Solids 2006;29:69- 80.
  • Forsback AP, Areva S, Salonen JI. Mineralization of dentin induced by treatment with bioactive glass S53P4 in-vitro. Acta Odont Scand 2004;62:14-20.
  • Burwell AK, Litkowski LJ, Greenspan DC. Calcium sodium phosphosilicate (NovaMin): remineralization potential. Adv Dent Res 2009;21:35-9.
  • Vahid Golpayegani M, Sohrabi A, Biria M, Ansari G. Remineralization Effect of Topical NovaMin Versus Sodium Fluoride (1.1%) on Caries-Like Lesions in Permanent Teeth. J Dent 2012;9:68-75.
  • Diamanti I, Koletsi-Kounari H, Mamai-Homata E, Vougiouklakis G. In vitro evaluation of fluoride and calcium sodium phosphosilicate toothpastes, on root dentine caries lesions.J Dent 2011;39:619-28.
  • Prabhakar AR, Arali V. Comparison of the remineralizing effects of sodium fluoride and bioactive glass using bioerodible gel systems. J Dent Res Dent Clin Dent Prospects. 2009;3:117-21.
  • Yli-Urpo H, Närhi T, Söderling E. Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral micro-organisms in vitro. Acta Odontol Scand. 2003;6:241-6.
  • Chiang YC, Chen HJ, Liu HC, Kang SH, Lee BS, Lin FH, Lin HP, Lin CP. A novel mesoporous biomaterial for treating dentin hypersensitivity. J Dent Res 2010;89:236-40.
  • Wang Y, Li X, Chang J, Wu C, Deng Y. Effect of tricalcium silicate (Ca(3)SiO(5)) bioactive material on reducing enamel demineralization: an in vitro pH-cycling study. J Dent 2012;40:1119-26.
  • Dong Z, Chang J, Deng Y, Joiner A. Tricalcium silicate induced mineralization for occlusion of dentinal tubules. Aust Dent J 2011;56:175-80.
  • Onuma K, Yamagishi K, Oyane A: Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J Cryst Growth 2005;282:199–207.
  • Lee JJ, Lee YK, Choi BJ, Lee JH, Choi HJ, Son HK, Hwang JW, Kim SO. Physical properties of resin- reinforced glass ionomer cement modified with micro and nano-hydroxyapatite. J Nanosci Nanotechnol. 2010;10:5270-6.
  • Huang Sb, Gao SS, Yu HY, Effect of nano- hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater 2009;4:55-9.
  • Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano- hydroxyapatitetoothpastes. J Dent 2011;6:430-7
  • Huang S, Gao S, Cheng L, Yu H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res 2011;45:460- 8.
  • Swarup JS, Rao A. Enamel surface reminerali- zation: Using synthetic nanohydroxyapatite. Contemp Clin Dent 2012;3:433-6.
  • Çelik EU, Yazkan B, Katırcı G. Başlangıç çürük lezyonlarının tedavisi. Atatürk Üniv Dis Hek Fak Derg. 2011;1:48-56
  • Reynolds EC, Cai F, Shen P, Walker GD. Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar- free chewing gum. J Dent Res 2003;82:206–11.
  • Rahiotis C, Vougiouklakis G. Effect of a CPP-ACP agent on the demineralization and remineralization of dentine in vitro. J Dent 2007;35:695-8.
  • Reynolds EC, Cain CJ, Webber FL. Anticariogenecity of calcium phosphate complexes of tryptic casein phosphopeptides in the rat. J Dent Res 1995;74:1272-9
  • Cochrane NJ, Saranathan S, Cai F, Cross KJ, Reynolds EJ Enamel subsurface remineralization with casein phosphopeptides stabilized solution of calcium, phosphate and fluorid. Caries Res 2008;42:88-97
  • Karlinsey RL. US Provisional patent 20070178220. Materials and methods for manufacturing amorphous tricalcium phosphate and metal oxide alloys of amorphous tricalcium phosphate and methods of using the same
  • Karlinsey RL, Mackey AC. Solid-state preparation and dental bapplication of an organically modified calcium phosphate. J Material Sci.2009;44:346-349
  • Vogel GL, Zhang Z, Carey CM, Ly A, Chow LC, Proskin HM. Composition of plaque and saliva following a sucrose challenge and use of an alpha- tricalcium-phosphate-containing chewing gum. J Dent Res 1998;77:518-24.
  • Brunton PA, Davies RP, Burke JL, Smith A, Aggeli A, Brookes SJ, Kirkham J. Treatment of early caries lesions using biomimetic self-assembling peptides - a clinical safety trial. Br Dent J 2013;215:E6.
  • Sullivan RJ, Charig A, Blake-Haskins J, Zhang YP, Miller SM, Strannick M, Gaffar A, Margolis HC. In vivo detection of calcium from dicalcium phosphate dihydrate dentifrices in demineralized human enamel and plaque. Adv Dent Res 1997;11:380-7.
  • Wefel JS, Harless JD. The use of saturated DCPD in remineralization of artificial caries lesions in vitro. J Dent Res 1987;66:1640-3.
  • Zhang YP, Din CS, Miller S, Nathoo SA, Gaffar A. Intraoral remineralization of enamel with a MFP/DCPD and MFP/ silica dentifrice using surface microhardness. J Clin Dent 1995;6:148-53.
  • Kitasako Y, Tanaka M, Sadr A, Hamba H, Ikeda M, Tagami J. Effects of a chewing gum containing phosphoryloligosaccharides of calcium (POs-Ca) and fluoride onremineralization and crystallization of enamel subsurfacelesions in situ. J Dent 2011;39:771-9
  • To-o K, Kamasaka H, Nishimura T, Kuriki T, Saeki S,Nakabou Y. Absorbability of calcium from calcium-boundphosphoryl comparison with that from various calcium compounds in the rat ligated jejunum loop. Bioscience 2003;67:1713–8.
  • oligosaccharides in Biotechnology and Biochemistry
  • Duke SA. Effect induced by a chalk-based toothpaste on the pH changes of plaque challenged by a high sugar diet over an8-hour period.Caries Res 1986;20:381-4.
  • Cury JA, Simões GS, Del Bel Cury AA, Gonçalves NC, Tabchoury CP. Effect of a calcium carbonate- based dentifrice on in situ enamel remineralization. Caries Res 2005;39:255-7.
  • Curry JA, Francisco SB, Simões GS, Del Bel Cury AA, Tabchoury CPM: Effect of a calcium car- bonate-based dentifrice on enamel demineral- ization in situ. Caries Res 2003;37:194–9.
  • Danelon M, Takeshita EM, Sassaki KT, Delbem AC. In situ evaluation of a low fluoride concentration gel with sodium trimetaphosphate in enamel remineralization. Am J Dent 2013 Feb;26:15-20.
  • Finn SB, Frew RA, Leibowitz R, Morse W, Man-son- Hing L, Brunelle J: The effect of sodium trimetaphosphate (TMP) as a chewing gum additive on caries increments in children. J Am Dent Assoc 1978;96:651–5.
  • O’Mullane DM, Kavanagh D, Ellwood RP, Chesters RK, Schafer F, Huntington E, Jones PR: A three- year clinical trial of a combination of trimetaphosphate and sodium fluoride in silica toothpaste. J Dent Res 1997;76:1776–81.
Toplam 101 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Makaleler
Yazarlar

Selçuk Savaş

Ebru Küçükyılmaz Bu kişi benim

Yayımlanma Tarihi 11 Şubat 2015
Yayımlandığı Sayı Yıl 2014 2014: Supplement 9

Kaynak Göster

APA Savaş, S., & Küçükyılmaz, E. (2015). DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 24(-3), 113-125. https://doi.org/10.17567/dfd.94552
AMA Savaş S, Küçükyılmaz E. DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR. Ata Diş Hek Fak Derg. Şubat 2015;24(-3):113-125. doi:10.17567/dfd.94552
Chicago Savaş, Selçuk, ve Ebru Küçükyılmaz. “DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24, sy. -3 (Şubat 2015): 113-25. https://doi.org/10.17567/dfd.94552.
EndNote Savaş S, Küçükyılmaz E (01 Şubat 2015) DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24 -3 113–125.
IEEE S. Savaş ve E. Küçükyılmaz, “DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR”, Ata Diş Hek Fak Derg, c. 24, sy. -3, ss. 113–125, 2015, doi: 10.17567/dfd.94552.
ISNAD Savaş, Selçuk - Küçükyılmaz, Ebru. “DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24/-3 (Şubat 2015), 113-125. https://doi.org/10.17567/dfd.94552.
JAMA Savaş S, Küçükyılmaz E. DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR. Ata Diş Hek Fak Derg. 2015;24:113–125.
MLA Savaş, Selçuk ve Ebru Küçükyılmaz. “DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, c. 24, sy. -3, 2015, ss. 113-25, doi:10.17567/dfd.94552.
Vancouver Savaş S, Küçükyılmaz E. DİŞ HEKİMLİĞİNDE KULLANILAN REMİNERALİZASYON AJANLARI VE ÇÜRÜK ÖNLEYİCİ AJANLAR. Ata Diş Hek Fak Derg. 2015;24(-3):113-25.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.