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Abstract
The paper is devoted to differential geometric invariants determining a Frenet curve in En up to a direct
similarity. These invariants can be presented by the Euclidean curvatures in terms of an arc lengths of
the spherical indicatrices. Then, they expressed by focal curvatures of the curve. And then, we give
the relationship between curvatures of evolute curve and shape curvatures. Morever, the geometric
interpretations of these invariants are given.
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1. Introduction
A similarity of the Euclidean space En is an automorphism of En for which the ratio: distance between two

arbitrary points to distance between the transformed points is a positive constant. A direct similarity is an orientation
preserving similarity.

A few important curves which are associated with Frenet curve in En such as spherical images, focal curve
which consist of centers of the osculating spheres, the evolute curve which is the locus of the centers of the Meusnier
spheres, etc. In this work, we investigate invariants of the curve under the direct similarity transformations. For
this, we use its spherical images Vi which is the i− th Frenet vector field of the curve in En. Arc length of this curve
is preserved under the direct similarity transformation which is called spherical arc length of the curve. The curve
is reparametrization according to spherical arc length. Then, we calculated some differential-geometric invariants
under the direct similarities which are called shape curvatures.

We express the shape curvatures by using the focal curves which are introduced by Uribe-Vargas. Then, we
investigate the relationship between the shape curvatures of the curve and the Frenet curvatures of its evolute
curve.

2. Preliminaries
In this section, we review some basic concepts on classical differential geometry of space curves in Euclidean

n−space. For any two vectors x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) ∈ En, x.y as the standard inner product.
Let α : I ⊂ R → En be a curve with α̇(t) 6= 0, where α̇(t) = dα

dt . We also denote the norm of x by ‖x‖ . The arc
length parametres of curve α is determined such that ‖α′(s)‖ = 1, where α′(s) = dα

ds . Let V1, V2,..., Vn be a Frenet
moving n−frame of the curve α. Then the following Frenet-Serret formula holds

V ′1(s) = κ1(s)V2(s) (2.1)
V ′i (s) = −κi−1(s)Vi−1(s) + κi(s)Vi+1(s)

V ′n(s) = −κn−1(s)Vn−1(s)
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where κ1, κ2, ..., κn−1 are the curvatures of the curve α at the point s.
We will study the differential-geometric invariants of a curve in En with respect to the group Sim+(Rn) of all

orientation-preserving similarities of Rn. Any such similarity F : Rn → Rn is called a direct similarity and can be
expressed in the form

F (x) = λAx+ b

where x ∈ En is an arbitrary point, A is an orthogonal n× n matrix, b is a translation vector and λ is a positive real
constant.

We denote the image of the curve α under the direct similarity F by the curve ᾱ, i.e., ᾱ = F ◦ α. Then, the curve
ᾱ can be expressed as

F ◦ α(t) = F (α(t)) = λAα(t) + b. (2.2)

The arc length functions of the curves α and ᾱ are

s(t) =

t∫
t0

∥∥∥∥dα(u)

du

∥∥∥∥ du and s̄(t) =

t∫
t0

∥∥∥∥dᾱ(u)

du

∥∥∥∥ du = λs(t). (2.3)

Let
{
V̄1, V̄2, ..., V̄n, κ̄1, κ̄2, ..., κ̄(n−1)

}
be a Frenet apparatus of the curve ᾱ. Since

ds

ds̄
=

1

λ
(=const.) the curvatures of

the curve ᾱ are given by

κ̄i =
1

λ
κi(s) , i = 1, 2, ..., n− 1. (2.4)

3. The expression of the curve α according to the parameter σi

In this section, we give some characterizations of the curve α by using the arc length parameters of its Vi
indicatrix curve.

Let γ(σi) = Vi(s) be a spherical Vi indicatrix curve of the curve α with the arc length parameter σi. Then the
curve α admits a reparametrization by σi

α = α(σi) : I ⊂ R→ En.

It is clear that
dσi =

√
(κi−1(s))

2
+ (κi(s))

2
ds ,

d

dσi
=

1√
(κi−1)

2
+ (κi)

2

d

ds
. (3.1)

The function dσi =

√
(κi−1)

2
+ (κi)

2
ds is an invariant under the group of the direct similarities of En.

Let V1, V2,..., Vn be a Frenet frame vectors along the curve α parameterized by the arc length parameter σi of its
Vi−indicatrix curve. Then the structure equations of the curve α are given by

dα

dσi
=

1√
(κi−1)

2
+ (κi)

2
V1(s), (3.2)

d

dσi
(V1, V2, ..., Vn−1, Vn)T = K(V1, V2, ..., Vn−1, Vn)T (3.3)

where

K =



0 κ1√
(κi−1)2+(κi)

2
· · · 0 0

− κ1√
(κi−1)2+(κi)

2
0 · · · 0 0

0 − κ2√
(κi−1)2+(κi)

2
· · · 0 0

0 0 · · · 0 0
.
.
.

.

.

.

.

.

.

.

.

.

0 0 · · · 0 κn−1√
(κi−1)2+(κi)

2

0 0 · · · − κn−1√
(κi−1)2+(κi)

2
0


.
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The orthogonal n-frame of the curve α is choosen as follows 1√
(κi−1)

2
+ (κi)

2
V1(s),

1√
(κi−1)

2
+ (κi)

2
V2(s), ...,

1√
(κi−1)

2
+ (κi)

2
Vn(s)

 .

Also, if we use the following notations

κ̃ =
d

ds

 1√
(κi−1)

2
+ (κi)

2

 and κ̃j =
κj√

(κi−1)
2

+ (κi)
2
, j = 1, 2, . . . , n− 1.

then the derivatives of these vectors according to σi are obtained as follows

d

dσi

(
1√

(κi−1)2+(κi)
2
V1, ...,

1√
(κi−1)2+(κi)

2
Vn

)T
= K̃

(
1√

(κi−1)2+(κi)
2
V1, ...,

1√
(κi−1)2+(κi)

2
Vn

)T
(3.4)

where

K̃ =



κ̃ κ̃1 0 · · · 0 0 0
−κ̃1 κ̃ κ̃2 · · · 0 0 0

0 −κ̃2 κ̃ · · · 0 0 0
0 0 −κ̃3 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −κ̃n−2 κ̃ κ̃n−1

0 0 0 · · · 0 −κ̃n−1 κ̃


.

Remark 3.1. For i = 1 (that is, σi = σ) the Eq. (3.3) coincidence with Eq. (2.6) in [2].

Definition 3.1. Let α : I ⊂ R → En be a Frenet curve parameterized by an arc length parameter σi of its Vi−
indicatrix curve. The functions

κ̃(σi) = − 1√
(κi−1)

2
+ (κi)

2

d

(√
(κi−1)

2
+ (κi)

2

)
dσi

and κ̃j(σi) =
κj√

(κi−1)
2

+ (κi)
2

, j = 1, 2, ..., n− 1 (3.5)

are called shape curvatures of the curve α.

Proposition 3.1. Let α(σi) : I ⊂ R→ En be a Frenet curve with the orthogonal n−frame 1√
(κi−1)

2
+ (κi)

2
V1,

1√
(κi−1)

2
+ (κi)

2
V2, ...,

1√
(κi−1)

2
+ (κi)

2
Vn

 .

The shape curvatures of the curve α

κ̃(σi) = − 1√
(κi−1)

2
+ (κi)

2

d

(√
(κi−1)

2
+ (κi)

2

)
dσi

and κ̃j(σi) =
κj√

(κi−1)
2

+ (κi)
2

, j = 1, 2, ..., n− 1

are differential geometric invariants determining the curve α up to a direct similarity.

Proof. Let
{
V̄1, V̄2, ..., V̄n, κ̄1, κ̄2, ..., κ̄(n−1)

}
be a Frenet apparatus of the curve ᾱ = F ◦ α. The shape curvatures of

the curve ᾱ are given by

˜̄κ(σi) = − 1√
(κ̄i−1)

2
+ (κ̄i)

2

d

(√
(κ̄i−1)

2
+ (κ̄i)

2

)
dσ̄i
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By using the κ̄i =
1

λ
κi(s) , i = 1, 2, ..., n− 1 and ds

ds̄ =
1

λ
, we have

˜̄κ(σi) = κ̃(σi)

and we obtain

˜̄κj(σi) =
κ̄j√

(κ̄i−1)
2

+ (κ̄i)
2
,

˜̄κj(σi) = κ̃j(σi).

So, the desired results are obtained.

Remark 3.2. For i = 1 (that is, σi = σ) κ̃ and κ̃j (j = 2, . . . , n − 1) coincidence with κ̃1 and κ̃i (i = 2, 3, . . . , n − 1)
respectively in [2].

4. The relation between the curve α and its evolute curve
Definition 4.1. Let α : I ⊂ R→ E3 be a unit speed Frenet curve with Frenet apparatus {κ1, κ2, V1, V2, V3} and β be
an evolute curve of the curve α. Then there exist the following equality

β(s) = α(s) +m1(s)V2(s) +m2(s)V3(s)

where m1(s) = 1
κ1(s) , m2(s) = 1

κ1(s) cot
(∫
κ2(s)ds

)
[4].

In [6], R. Uribe-Vargas found formulas which express the Euclidean curvatures in terms of the focal curvatures.
Similarly, we can represent all differential-geometric invariants κ̃i by the mi (i = 1, 2) curvatures and their
derivatives. For i = 1, we have κ̃1 = d

ds ( 1
κ1

) and κ̃2 =
κ2

κ1
.

Proposition 4.1. Let α : I → R3 be a unit speed Frenet curve. Then, the shape curvatures κ̃i (i = 1, 2) of the curve α are
given in terms of the curvatures mi following as

κ̃1 = m′1 and κ̃2 =
m1(m′1m2 −m1m

′
2)

m2
1 +m2

2

.

Proof. Since κ̃1 = d
ds ( 1

κ1
) and κ̃2 = κ2

κ1
then we get

m′1(s) =

(
1

κ1(s)

)′
= κ̃1.

m′2(s) =

(
1

κ1(s)
cot

(∫
κ2(s)ds

))′
= m′1

m2

m1
− κ2

κ1

1

sin2
(∫
κ2(s)ds

)
κ̃2 =

m1(m′1m2 −m1m
′
2)

m2
1 +m2

2

.

5. The relation between the curve α and its focal curve
Let α : I ⊂ R → En be a unit speed Frenet curve. Suppose that all Euclidean curvatures of the curve α are

nonzero for any s ∈ I. The curve Cα : I ⊂ R→ En consisting of the centers of the osculating spheres of the curve α
is called the focal curve of the curve α. Then the focal curve Cα has a representation:

Cα = α(s) + f1(s)V2(s) + ...+ fn−2(s)Vn−1(s) + fn−1(s)Vn(s) (5.1)

where the functions fi(s), i = 1, ..., n− 1 are called focal curvatures of the curve α. In [6], Uribe-Vargas found an
equation between the Euclidean curvatures and the focal curvatures. Then by using this equation, we can express
the shape curvatures of the curve α in terms of focal curvatures.
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Proposition 5.1. Let α : I ⊂ R→ En be a space curve with all Euclidean curvatures different from zero. Then we have

(5.2)

κ̃ =
d

ds

 fi−2fi−1fi√((
f1f ′1 + f2f ′2 + · · ·+ fi−2f ′i−2

)
fi
)2

+
((
f1f ′1 + f2f ′2 + · · ·+ fi−1f ′i−1

)
fi−2

)2
 ,

κ̃j =
fi−2fi−1fi
fj−1fj

f1f
′
1 + f2f

′
2 + · · ·+ fj−1f

′
j−1√((

f1f ′1 + f2f ′2 + · · ·+ fi−2f ′i−2

)
fi
)2

+
((
f1f ′1 + f2f ′2 + · · ·+ fi−1f ′i−1

)
fi−2

)2 ,

j = 1, ..., n− 1.

Proof. According to the first two theorems in [6], there is a relation between the Frenet curvatures and the focal
curvatures as follows:

κ1 =
1

f1
and κi =

f1f
′
1 + f2f

′
2 + · · ·+ fi−1f

′
i−1

fi−1fi
, i = 2, 3, ..., n− 1. (5.3)

By using the Eq. (3.5), we get the Eq. (5.3).

Remark 5.1. For i = 1 (that is σi = σ), the representation of the shape curvatures is given with Eq.(5.2) the same as
representation of the shape curvatures is given with Eq. (4.2) in [2].

6. Self-Similar Frenet Curves
The curve α : I ⊂ R→ En is called a self-similar curve if and only if all its invariants κ̃, κ̃1, ..., κ̃n−1 are constant.

K =



0 κ̃1 0 0 · · · 0 0 0
−κ̃1 0 κ̃2 0 · · · 0 0 0

0 −κ̃2 0 κ̃3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −κ̃n−2 0 κ̃n−1

0 0 0 0 · · · 0 −κ̃n−1 0


.

According to [3], the normal form of the matrix K is given by

0 λ1 0 0 · · · 0 0 0
−λ1 0 0 0 · · · 0 0 0

0 0 0 λ2 · · · 0 0 0
0 0 −λ2 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 0 λm
0 0 0 0 · · · 0 −λm 0


.

Then the symmetric matrix K2 has m = n
2 negative eigenvalues with multiplicity two: −λ2

1, −λ2
2,...,−λ2

m.

Self- Similar Curves in Even-Dimensional Euclidean Spaces
In this section, we get the expression of the self-similar curve α according to the parameter σi in the even

dimensional real space R2m.

Theorem 6.1. Let α : I → R2m be a self-similar Frenet curve. The curve α, parameterized by the arc length parameter σi of
its Vi−indicatrix curve, is given by

α (σi) =

(
a1

b1
eκ̃σi sin θ1,−

a1

b1
eκ̃σi cos θ1, · · · ,

am
bm

eκ̃σi sin θm,−
am
bm

eκ̃σi cos θm

)
(6.1)
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where bj =
√
κ̃2 + λ2

j and θj =
√
λ2
jσi + arccos


√
λ2
j√

κ̃2 + λ2
j

 for j = 1, 2, ...,m. The real different nonzero numbers

a1, a2, · · · , am are solution of the system

〈Vj , Vj〉 = 1, 1 6 j 6 m.

Proof. The unit vector fields {V1(σi), V2(σi), · · · , V2m−1(σi), V2m(σi)} are expressed in the form as follows:

ω(σi) = (V1(σi), V2(σi), · · · , V2m−1(σi), V2m(σi)).

From the solution of the differential equation d
dσi

ω = Kω, we can calculate the unit vector fields

{V1(σi), V2(σi), · · · , V2m−1(σi), V2m(σi)} .

Also, the first unit vector is calculated by

V1(σi) = (a1 cos(λ1σi), a1 sin(λ1σi), · · · am cos(λmσi), am sin(λmσi)).

Since 〈V1, V1〉 = 1, we obtain that
m∑
j=1

a2
j = 1. The parametric equation of the curve α is given by

X = (x1(σ), x2(σ), · · · , x2m−1(σ), x2m(σ)).

By using the Eq. (3.1), we can write d
dσi

X =
1√

κ2
i−1 + κ2

i

V1. We can easily see that
√
κ2
i−1 + κ2

i = e−κ̃σi . Hence, we

have
d

dσi
x2j−1 = aje

κ̃σ cos(λjσi) and
d

dσi
x2j = aje

κ̃σi sin(λjσi), 1 6 j 6 m.

Taking the integrals of the last equations, we obtain

x2j−1 =
aj
κ̃
e
κ̃1σi

cos(λjσi) +
λj
κ̃
x2j , (6.2)

x2j =
aj
κ̃
e
κ̃1σi

sin(λjσi)−
λi
κ̃
x2j−1

.
. (6.3)

Using the Eq.(6.2) and Eq.(6.3) , we get two equations:

x2j−1 =
aj

κ̃2 + λ2
j

e
κ̃σi

(κ̃ cos(λjσi) + λj sin(λjσi)) =
aj
bj
eκ̃σi sin θj ,

x2j =
aj

κ̃2 + λ2
j

e
κ̃σi

(κ̃ sin(λjσi)− λj cos(λjσi)) = −aj
bj
eκ̃σi cos θj

where

sin θj =
bj
κ̃

(cos(λjσi)−
λj
bj

cos θj),

cos θj = −bj
κ̃

(sin(λjσi)−
λj
bj

sin θj).

So, the function θj is found

θj = λjσi + arccos
λj√
κ̃2 + λ2

j

.
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We can write from the equation
d

dσi
ω = Kω

V1(σi) = e−κ̃σi
d

dσi
α(σi),

V2(σi) =
1

κ̃1

d

dσi
V1(σi),

V3(σi) =
1

κ̃2
(−k̃1V1(σi) +

d

dσi
V2(σi)),

V4(σi) =
1

κ̃3
(κ̃2V2(σi) +

d

dσi
V3(σi)),

...

Vm(σi) =
1

κ̃m−1
(κ̃m−2Vm−2(σi) +

d

dσi
Vm−1(σi)).

By using an algebric calculus, we obtain the following equations:

〈V1, V1〉 = 1⇒
m∑
j=1

a2
j = 1,

〈V2, V2〉 = 1⇒
m∑
j=1

a2
jλ

2
j = κ̃2

1,

〈V3, V3〉 = 1⇒
m∑
j=1

a2
j (1− λ2

j )
2 = κ̃2

2,

〈V4, V4〉 = 1⇒
m∑
j=1

a2
jλ

2
j (κ̃

2
2 − λ2

j )
2 = κ̃2

2κ̃
2
3,

and so on. The proof is completed.

Remark 6.1. In the Eq.(6.1), if we take the σi = σ, then we obtain the Eq. (5.2) in [2].

Self-Similar Curves in Odd-Dimensional Euclidean Spaces
In this section, we give also express the self-similar curves in odd-dimensional Euclidean space R2m+1.

Theorem 6.2. Let α : I → R2m+1 be a self-similar curve. The curve α, parameterized by the arc length parameter σi of its
Vi−indicatrix curve, is given by

α (σi) =

(
a1

b1
eκ̃σi sin θ1,−

a1

b1
eκ̃σi cos θ1, · · · ,

am
bm

eκ̃σi sin θm,−
am
bm

eκ̃σi cos θm, am+1e
κ̃σi

)
(6.4)

where bj =
√
κ̃2 + λ2

j and θj =
√
λ2
jσi + arccos


√
λ2
j√

κ̃2 + λ2
j

 for 1 6 j 6 m. To calculate the real different nonzero

numbers a1, a2, · · · , am+1, we use the following (m+ 1)− equations

V1(σi) = e−κ̃σi
d

dσi
, α(σi)

V2(σi) =
1

κ̃1

d

dσi
V1(σi),

V3(σi) =
1

κ̃2
(−κ̃1V1(σi) +

d

dσi
V2(σi)),

V4(σi) =
1

κ̃3
(κ̃2V2(σi) +

d

dσi
V3(σi)),

...

Vm+1(σi) =
1

κ̃m
(κ̃m−1Vm−1(σi) +

d

dσi
Vm(σi)).



Generalized Similar Frenet Curves 33

〈Vj , Vj〉 = 1, 1 6 j 6 m+ 1.

From the above statements, we obtain the following equalities

〈V1, V1〉 = 1⇒
m∑
i=1

a2
i + κ̃2a2

m+1 = 1

〈V2, V2〉 = 1⇒
m+1∑
i=1

a2
iλ

2
i = κ̃2

1

〈V3, V3〉 = 1⇒
m∑
i=1

a2
i (1−

λ2
i

κ̃2
1

)2 + κ̃2a2
m+1 =

κ̃2
2

κ̃2
1

〈Vi, Vi〉 = 1 , 4 6 i 6 m+ 1.

Proof. The proof can be made similar to the proof of Theorem 6.1.

Remark 6.2. For i = 1 (that is σi = σ), the representation of the curve α in the Eq.(6.4) is the same as the curve given
in the Eq. (5.4) in [2].

Example 6.1. The shape curvature functions κ̃1 =
3√
13

and κ̃2 =
2√
13

of the curve α are in R3. We can calculate

the curve α (see Figure 1) corresponding to them

α (σ2) =

(
a1

b1
eκ̃σ2 sin θ1,−

a1

b1
eκ̃σ2 cos θ1, a2e

κ̃σ2

)
where σ2 is arc length parameter of its normal indicatrix curve. If we use the given equations in Theorem 6.2 for
m = 1, we get the values needed to determine the curve as follows:

λ2
1 =

5

13
, a1 =

3√
5

and a2 =
2√
5
, b1 =

√
36 + 5s4

√
13s2

, θ1 =

√
5

13
σ2 + arccos

 √
5√

36
s4 + 5

 .

The curve α for these values is plotted using the Mathematica program in figure 1.
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Figure 1. The curve α.
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7. Geometric Interpretation of the Shape Curvatures in Euclidean 3-Space

In this section, we investigate that the shape curvatures of the curve are related to the geodesic curvatures of its
indicatrix curves.

Proposition 7.1. Geodesic curvatures of indicatrix curves are invariant under the group Sim+(R3).

Proof. Let α : I → R3 be a Frenet curve with Frenet apparatus {V1, V2, V3, κ1, κ2} and κ̃1, κ̃2 be shape curvatures. Its
indicatrix curve γ : I → S2 is a spherical curve with arc length parameter σi (i = 1, 2, 3). The vector t(σi) = d

dσi
γ(σi)

is a unit tangent vector of the curve γ. Third vector ρ(σi) = γ(σi) ∧ t(σi) is defined along the curve γ on the unit
sphere. This frame is called the Sabban frame of the curve γ on the unit sphere S2. Also, the derivetives of the
vectors of the Sabban frame are defined as follows:

d

dσi

 γ
t
ρ

 =

 0 1 0
−1 0 κg
0 −κg 0

 γ
t
ρ

 (7.1)

where the function κg = det(γ, t,
dt

dσi
) is called the geodesic curvature of the curve γ.

Let ᾱ be a similar curve of the curve α under the group Sim+(R3) and
{
V̄1, V̄2, V̄3, κ̄1, κ̄2, ˜̄κ1, ˜̄κ2

}
be Frenet

apparatus of the curve ᾱ. Its indicatrix curve γ̄ : I → S2 is a spherical curve with arc length parameter σ̄i (i = 1, 2, 3).
The orthogonal frame {γ̄(σ̄i), t̄(σ̄i), ρ̄(σ̄i)} along the curve γ̄ is called the Sabban frame on the unit sphere.

If the curve γ is a tangent indicatrix curve with arc length parameter σ1 then the following equalities hold

t(σ1) =
d

dσ1
γ(σ1),

d

dσ1
t(σ1) = −γ(σ1) +

κ̃2

κ̃1
ρ(σ1).

So, the geodesic curvature κg =
κ̃2

κ̃1
is obtained. Similarly, we calculate κ̄g =

˜̄κ2˜̄κ1

. From the Proposition 3.1, we get

κ̄g = κg.
If the curve γ is a normal indicatrix curve with arc length parameter σ2, then we obtain the following formulas

t(σ2) =
d

dσ2
γ(σ2),

d

dσ2
t(σ2) = −γ(σ2) + κ̃2

1

d

dσ2

(
κ̃2

κ̃1

)
ρ(σ2).

From the last equation, we can easily see that κg(σ2) = κ̃2
1

d

dσ2

(
κ̃2

κ̃1

)
. Similarly, we get κ̄g = ˜̄κ2

1

d

dσ̄2
(
˜̄κ2˜̄κ1

). So, κ̄g is

equal to κg.
If the curve γ is a binormal indicatrix curve with arc length parameter σ3, then the following formulas hold

t(σ3) =
d

dσ3
γ(σ3),

d

dσ3
t(σ3) = −γ(σ3) +

κ̃1

κ̃2
ρ(σ2)

Since κg(σ3) =
κ̃1

κ̃2
and κ̄g =

˜̄κ1˜̄κ2

are obtained, κg equals to κ̄g .
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