Higher dimensional algebras as ideal maps

Alper Odabass ${ }^{* 1}$ (1), Erdal Ulualan ${ }^{2}$ (ㄷ)
${ }^{1}$ Osmangazi University, Department of Mathematics and Computer Sciences, Eskisehir, Turkey
${ }^{2}$ Dumlupınar University, Department of Mathematics, Kütahya, Turkey

Abstract

In this work, we explain the close relationship between an ideal map structure $S \rightarrow$ $E n d_{R}(R)$ on a homomorphism of commutative k-algebras $R \rightarrow S$ and an ideal simplicial algebra structure on the associated bar construction $\operatorname{Bar}(S, R)$. We also explain this structure for crossed squares of algebras.

Mathematics Subject Classification (2010). 18G30, 18G35, 18G55
Keywords. crossed module, crossed square, ideal map

1. Introduction

Crossed modules introduced by Whitehead, [16], are algebraic models of connected (weak homotopy) 2-types. The commutative algebra version of crossed modules has been introduced by Porter in [13]. Crossed squares defined by Loday and Guin-Walery,[11], can be regarded as 2-dimensional version of crossed modules as models for connected 3-types. Ellis, [7], gave these structures for Lie algebras and commutative algebras. These algebraic models are called "combinatorial algebra theory" and contain potentially important new ideas (see [4,5]).

We consider the equivalence between the category of crossed modules of algebras (cf. [13]) and the category of simplicial commutative algebras with Moore complex of length 1 given in [3]. The main aim of this note is to associate an explicit ideal simplicial algebra structure on the bar construction given a crossed module of algebras and to give the same idea for crossed squares of algebras and bisimplicial algebras. We observed that a crossed module structure $\left(S \rightarrow \operatorname{End}_{R}(R)\right.$) or an ideal map structure on a homomorphism of algebras $\eta: R \rightarrow S$ directly yields a simplicial algebra structure on the usual bar construction namely on the simplicial k-module $\operatorname{Bar}(S, R)=\left(S \times R^{k}\right)_{k \geqslant 0}$, where k is a commutative ring with 1 . Thus, $\operatorname{Bar}(S, R)$ is isomorphic, as a simplicial k -module, to a simplicial algebra, which is compatible with the action of R on the bar construction. Moreover, this process is reversible. Therefore, we can summarize the result as follows: Given an algebra homomorphism $\eta: R \rightarrow S$, a crossed module structure or an ideal map structure on the homomorphism η gives an ideal simplicial algebra structure on the simplicial k-module $\operatorname{Bar}(S, R)$, and conversely, any ideal simplicial algebra structure on the simplicial k-module $\operatorname{Bar}(S, R)$ determines a crossed module structure on the homomorphism η. These two explicit associations are mutual inverses. In the last section, we

[^0]explain how to give an extension of this result to Ellis's (crossed) squares of k-algebras (cf. [6]). In section 5, considering a crossed ideal structure over the map $\alpha: \eta_{1} \rightarrow \eta_{2}$ between crossed modules η_{1} and η_{2}, we proved that a crossed ideal map preserves the crossed ideals in the category of crossed modules of commutative k-algebras.

These constructions in the category of groups can be found in [9]. In fact, the results and general methods given in this work are inspired by those proved for the corresponding case of groups using homotopy normal maps in [9]. For further work about homotopy normal maps, see [8] and [14] and for the free normal closure of a homotopy normal map, see [10].

2. Simplicial sets and simplicial algebras

Let k be a fixed commutative ring with identity. By a k-algebra, we mean a unital k-module C endowed with a k-bilinear associative multiplication $C \times C \rightarrow C,\left(c, c^{\prime}\right) \mapsto c c^{\prime}$. The algebra C will as usual be called commutative if $c c^{\prime}=c^{\prime} c$ for all $c, c^{\prime} \in C$. In this work, all algebras will be commutative and will be over the same fixed commutative ring k . We will denote the category of all algebras over the commutative ring k by Alg.

A simplicial set E consists of a family of sets E_{n}, for $n \geqslant 0$, together with face and degeneracy maps $d_{i}=d_{i}^{n}: E_{n} \rightarrow E_{n-1}, \quad 0 \leqslant i \leqslant n, \quad(n \neq 0)$ and $s_{i}=s_{i}^{n}: E_{n} \rightarrow E_{n+1}$, $0 \leqslant i \leqslant n$. These maps are required to satisfy the following simplicial identities:
(i) $d_{i} d_{j}=d_{j-1} d_{i}$ for $0 \leqslant i<j \leqslant n$,
(ii) $s_{i} s_{j}=s_{j+1} s_{i}$ for $0 \leqslant i \leqslant j \leqslant n$,
(iii) $d_{i} s_{j}= \begin{cases}s_{j-1} d_{i} & (\text { if } 0 \leqslant i<j \leqslant n), \\ I d & (\text { if } i=j \text { or } i=j+1), \\ s_{j} d_{i-1} & (\text { if } 0 \leqslant j<i-1 \leqslant n) .\end{cases}$

For more details regarding this, see [1,2] or [12]. In fact, a simplicial set E can be completely described as a functor $\mathrm{E}: \Delta^{o p} \rightarrow$ Sets where Δ is the category of finite ordinals $[n]=\{0<1<\cdots<n\}$ and non-decreasing maps.
We say that the simplicial set E is a simplicial k -module (or k -algebra) if E_{k} is a k module (or a k - algebra) for all k and the face and degeneracy maps are homomorphisms of k-modules (or k-algebras). Thus, a simplicial algebra can be defined as a functor from the opposite category $\Delta^{o p}$ to Alg.

2.1. The simplicial k-module $\operatorname{Bar}(X, R)$

In this section we give the usual bar construction of a simplicial k-module by using the action of a k -algebra on a k -module. First we define this action.

Let R be a k-algebra and X be a k -module. The action of R on X is defined by the function $X \times R \rightarrow X, r: x \mapsto x^{r}$ (where $r \in R, x \in X$) satisfying the following conditions:
(1) $(x)^{\left(r_{1}+r_{2}\right)}=\left(x^{r_{1}}\right)^{r_{2}}$
(2) $x^{0_{R}}=x$
(3) $\left(x_{1}+x_{2}\right)^{r_{1}+r_{2}}=\left(x_{1}\right)^{r_{1}}+\left(x_{2}\right)^{r_{2}}$
(4) $k(x)^{r}=(k x)^{k r}$
for all $r, r_{1}, r_{2} \in R, x, x_{1}, x_{2} \in X, k \in \mathrm{k}$.
Example 2.1. Let R be a subalgebra of a k-algebra X. Then, the function $X \times R \rightarrow X$, $r: x \mapsto x^{r}=x+r \in X$ (where $r \in R, x \in X$) defines the action of the algebra R on underlying k-module X of the k-algebra X.
Example 2.2. Suppose that $\eta: R \rightarrow S$ is a k-algebra homomorphism. Then, the kalgebra R acts on the underlying k-module S of the k-algebra S via η i.e. the action is

$$
r: s \rightarrow s^{r}=s+\eta(r)
$$

for all $r \in R$ and $s \in S$. Indeed, we obtain
(1) $s^{\left(r_{1}+r_{2}\right)}=s+\eta\left(r_{1}+r_{2}\right)=\left(s+\eta\left(r_{1}\right)\right)+\eta\left(r_{2}\right)=\left(s^{r_{1}}\right)^{r_{2}}$,
(2) $s^{0_{R}}=s+\eta\left(0_{R}\right)=s+0_{S}=s$,
(3) $\left(s_{1}+s_{2}\right)^{\left(r_{1}+r_{2}\right)}=\left(s_{1}+s_{2}\right)+\eta\left(r_{1}+r_{2}\right)=s_{1}+\eta\left(r_{1}\right)+s_{2}+\eta\left(r_{2}\right)=\left(s_{1}\right)^{r_{1}}+\left(s_{2}\right)^{r_{2}}$,
(4) $k(s)^{r}=k(s+\eta(r))=k s+\eta(k r)=(k s)^{k r}$
for all $s, s_{1}, s_{2} \in S$ and $r, r_{1}, r_{2} \in R$ and $k \in \mathrm{k}$.
Let R be a k-algebra acting on the k-module X as defined above. The bar construction

$$
B:=\operatorname{Bar}(X, R)
$$

is the simplicial k -module consisting of the following data.
(1) for each integer $n \geqslant 0$, a k-module B_{n} defined by $B_{0}=X$ for $n=0$, and $B_{n}=$ $X \times R^{n}$, for $n \geqslant 1$, where the operations in B_{n} are (for $x, x^{\prime} \in X$ and $r_{i}, r_{i}^{\prime} \in R$ and $k \in \mathrm{k}$)

$$
\left(x, r_{1}, r_{2}, \ldots, r_{n}\right) \oplus\left(x^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)=\left(x+x^{\prime}, r_{1}+r_{1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right)
$$

and

$$
k\left(x, r_{1}, r_{2}, \ldots, r_{n}\right)=\left(k x, k r_{1}, k r_{2}, \ldots, k r_{n}\right)
$$

(2) the face k-module homomorphisms $d_{i}^{n}: d_{i}: B_{n} \rightarrow B_{n-1}$ for all $n \geqslant 1$ and $0 \leqslant i \leqslant n$ defined by:
(i) $d_{0}:\left(x, r_{1}, r_{2}, \ldots, r_{n}\right) \mapsto\left(x^{r_{1}}, r_{2}, \ldots, r_{n}\right)$
(ii) $d_{i}:\left(x, r_{1}, r_{2}, \ldots, r_{i}, r_{i+1}, \ldots, r_{n}\right) \mapsto\left(x, r_{1}, r_{2}, \ldots, r_{i}+r_{i+1}, \ldots, r_{n}\right)$ for $1 \leqslant i<$ n,
(iii) $d_{n}:\left(x, r_{1}, r_{2}, \ldots, r_{n}\right) \mapsto\left(x, r_{1}, r_{2}, \ldots, r_{n-1}\right)$,
(3) and together with degeneracy k-module homomorphisms; $s_{j}: B_{n} \rightarrow B_{n+1}$ defined by

$$
s_{j}:\left(x, r_{1}, r_{2}, \ldots, r_{n}\right) \mapsto\left(x, r_{1}, r_{2}, \ldots, r_{j}, 0, r_{j+1}, \ldots, r_{n}\right)
$$

for all $n \geqslant 0$ and $0 \leqslant j \leqslant n$.

2.2. An ideal simplicial algebra structure on $\operatorname{Bar}(S, R)$

Lemma 2.3. Assume that $\eta: R \rightarrow S$ is a k-algebra homomorphism and the k-algebra R acts on the underlying k-module S via η as given in Example 2.2. Then, the bar construction $\operatorname{Bar}(S, R)$ is a simplicial k -module with the following properties:
(i) $B_{0}=S$ and for each integer $n \geqslant 1, B_{n}=S \times R^{n}$ is the k-module with the operations:

$$
\left(s, r_{1}, r_{2}, \ldots, r_{n}\right) \oplus\left(s^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)=\left(s+s^{\prime}, r_{1}+r_{1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right)
$$

for $s, s^{\prime} \in S$ and $r_{i}, r_{i}^{\prime} \in R$ and

$$
k\left(s, r_{1}, r_{2}, \ldots, r_{n}\right)=\left(k s, k r_{1}, k r_{2}, \ldots, k r_{n}\right)
$$

for $k \in \mathrm{k}$.
(ii) the face k-module homomorphisms $d_{i}^{n}: d_{i}: B_{n} \rightarrow B_{n-1}$ for all $n \geqslant 1$ and $0 \leqslant i \leqslant n$ are defined by:

$$
\begin{aligned}
& \quad d_{0}\left(s, r_{1}, r_{2}, \ldots, r_{n}\right)=\left(s+\eta\left(r_{1}\right), r_{2}, \ldots, r_{n}\right) \\
& d_{i}\left(s, r_{1}, r_{2}, \ldots, r_{i}, r_{i+1}, \ldots, r_{n}\right)=\left(s, r_{1}, r_{2}, \ldots, r_{i}+r_{i+1}, \ldots, r_{n}\right) \text { for } 1 \leqslant i<n \text {, } \\
& \quad \text { and }
\end{aligned}
$$

$$
d_{n}\left(s, r_{1}, r_{2}, \ldots, r_{n}\right)=\left(s, r_{1}, r_{2}, \ldots, r_{n-1}\right)
$$

(iii) the degeneracy k -module homomorphisms; $s_{j}: B_{n} \rightarrow B_{n+1}$ are defined by

$$
s_{j}\left(s, r_{1}, r_{2}, \ldots, r_{n}\right)=\left(s, r_{1}, r_{2}, \ldots, r_{j}, 0, r_{j+1}, \ldots, r_{n}\right)
$$

for all $n \geqslant 0$ and $0 \leqslant j \leqslant n$.

Proof. (i) $B_{0}=S$ is the underlying k-module of the k-algebra S and by definition of direct product of k -modules, we obtain that $B_{n}=S \times R^{n}$ is a k-module for each integer $n \geqslant 1$.
(ii) We show that the face maps d_{i} for $0 \leqslant i \leqslant n$ are k -module homomorphisms from B_{n} to B_{n-1}. For $u=\left(s, r_{1}, r_{2}, \ldots, r_{n}\right), v=\left(s^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right) \in B_{n}$ and $k \in \mathrm{k}$, we obtain

$$
\begin{aligned}
d_{0}(u \oplus v) & =d_{0}\left(s+s^{\prime}, r_{1}+r_{1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) \\
& =\left(\left(s+s^{\prime}\right)+\eta\left(r_{1}\right)+\eta\left(r_{1}^{\prime}\right), r_{2}+r_{2}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) \\
& =\left(s+\eta\left(r_{1}\right)+s^{\prime}+\eta\left(r_{1}^{\prime}\right), r_{2}+r_{2}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) \\
& =\left(s+\eta\left(r_{1}\right), r_{2}, \ldots, r_{n}\right) \oplus\left(s^{\prime}+\eta\left(r_{1}^{\prime}\right), r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right) \\
& =d_{0}(u) \oplus d_{0}(v),
\end{aligned}
$$

and

$$
\begin{aligned}
d_{0}(k u) & =d_{0}\left(k s, k r_{1}, \ldots, k r_{n}\right) \\
& =\left((k s)+\eta\left(k r_{1}\right), k r_{2}, \ldots, k r_{n}\right) \\
& =\left(k\left(s+\eta\left(r_{1}\right)\right), k r_{2}, \ldots, k r_{n}\right) \\
& =k\left(s+\eta\left(r_{1}\right), r_{2}, \ldots, r_{n}\right) \\
& =k d_{0}(u)
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
d_{i}(u \oplus v) & =d_{i}\left(s+s^{\prime}, r_{1}+r_{1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) \\
& =\left(s+s^{\prime}, r_{1}+r_{1}^{\prime}, r_{2}+r_{2}^{\prime}, \ldots, r_{i}+r_{i}^{\prime}+r_{i+1}+r_{i+1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) \\
& =\left(s+s^{\prime}, r_{1}+r_{1}^{\prime}, r_{2}+r_{2}^{\prime}, \ldots, r_{i}+r_{i+1}+r_{i}^{\prime}+r_{i+1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) \\
& =\left(s, r_{1}, r_{2}, \ldots, r_{i}+r_{i+1}, \ldots, r_{n}\right) \oplus\left(s^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{i}^{\prime}+r_{i+1}^{\prime}, \ldots, r_{n}^{\prime}\right) \\
& =d_{i}(u) \oplus d_{i}(v)
\end{aligned}
$$

and

$$
\begin{aligned}
d_{i}(k u) & =d_{i}\left(k s, k r_{1}, \ldots, k r_{n}\right) \\
& =\left(k s, k r_{1}, k r_{2}, \ldots, k r_{i}+k r_{i+1}, \ldots, k r_{n}\right) \\
& =k\left(s, r_{1}, r_{2}, \ldots, r_{i}+r_{i+1}, \ldots, r_{n}\right) \\
& =k d_{i}(u) .
\end{aligned}
$$

We also obtain

$$
\begin{aligned}
d_{n}(u \oplus v) & =d_{n}\left(s+s^{\prime}, r_{1}+r_{1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) & d_{n}(k u) & =d_{n}\left(k s, k r_{1}, \ldots, k r_{n}\right) \\
& =\left(s+s^{\prime}, r_{1}+r_{1}^{\prime}, \ldots, r_{n-1}+r_{n-1}^{\prime}\right) & & =\left(k s, k r_{1}, \ldots, k r_{n-1}\right) \\
& =\left(s, r_{1}, \ldots, r_{n-1}\right) \oplus\left(s^{\prime}, r_{1}^{\prime}, \ldots, r_{n-1}^{\prime}\right) & & =k\left(s, r_{1}, \ldots, r_{n-1}\right) \\
& =d_{n}(u) \oplus d_{n}(v) & & =k d_{n}(u) .
\end{aligned}
$$

It is easy to see s_{j} is a k -module homomorphism.
Definition 2.4. Let $B:=\operatorname{Bar}(S, R)$. By an ideal simplicial algebra structure on B, we mean the following
(i) $B_{0}=S$ is the k-algebra S,
(ii) $B_{k}:=S \times R^{k}$ is endowed with a k-algebra structure for all $k \geqslant 1$ and we denote the multiplication by

$$
\left(s, r_{1}, \ldots, r_{k}\right) *\left(s^{\prime}, r_{1}^{\prime}, \ldots, r_{k}^{\prime}\right)
$$

(iii) the face map d_{i}^{k} and the degeneracy map s_{j}^{k} are k -algebra homomorphisms.
(iv) for all $s, s^{\prime} \in S$

$$
(s, 0, \ldots, 0) *\left(s^{\prime}, 0, \ldots, 0\right)=\left(s s^{\prime}, 0, \ldots, 0\right)
$$

where the operations take place in B_{k}.

Remark 2.5. By the natural action of S on $\operatorname{Bar}(S, R)$, we mean

$$
s:\left(s^{\prime}, r_{1}, \ldots, r_{k}\right) \mapsto s \cdot\left(s^{\prime}, r_{1}, \ldots, r_{k}\right)=\left(s s^{\prime}, r_{1}, \ldots, r_{k}\right)
$$

for all $k \geqslant 0,\left(s^{\prime}, r_{1}, \ldots, r_{k}\right) \in B_{k}$ and $s \in S$. When we say that the multiplication in $\operatorname{Bar}(S, R)$ is compatible with the natural action of S, we mean that condition (iv) of Definition 2.4 holds.
Notation 2.6. Let $k \geqslant 1$. We denote
(1) $S_{k}:=\left\{\left(s, 0_{R}, 0_{R}, \ldots, 0_{R}\right): s \in S\right\}$ is a subalgebra of B_{k}.
(2) $R_{k}:=\left\{\left(0_{S}, r_{1}, r_{2}, \ldots, r_{k}\right): r_{i} \in R\right\}$ is an algebra ideal of B_{k}.

Lemma 2.7. Suppose that $\operatorname{Bar}(S, R)$ is endowed with an ideal simplicial algebra structure. Let $k \geqslant 1$. Then S_{k} is an ideal of B_{k} which is isomorphic to S, R_{k} is an ideal of B_{k}, $B_{k}=S_{k}+R_{k}$ and $S_{k} \cap R_{k}=\{0\}$.

Proof. S_{k} is the image of S_{k-1} under s_{k-1}, so by induction it is a subalgebra of B_{k} and since s_{k-1} is injective, it is isomorphic to S. Since R_{k} is the kernel of $d_{k} \circ d_{k-1} \circ \cdots \circ d_{1}$, it is an ideal of B_{k}. Also by Definition $2.4(i v), S_{k}$ is an ideal of B_{k}. Clearly $S_{k} \cap R_{k}=\{0\}$ and $B_{k}=S_{k}+R_{k}$.

2.3. Crossed modules, ideal maps and ideal structures

Crossed modules of groups were initially defined by Whitehead in [16]. The algebra analogue has been studied by Porter in [13].

A crossed module of algebras consists of an algebra homomorphism $\eta: R \rightarrow S$ which here we call an ideal map (see Remark 2.8) together with a homomorphism $l: S \rightarrow$ $E n d_{R}(R)$ which here we call an ideal structure (or a crossed module structure) on η. We denote by $s \cdot r$ the image of $r \in R$ under l_{s} for $s \in S$. Explicitly, the following hold (for all $k \in \mathrm{k}, r, r^{\prime} \in R$ and $\left.s, s^{\prime} \in S\right)$:
(1) $k(s \cdot r)=(k s) \cdot r=s \cdot(k r)$
(2) $s \cdot\left(r+r^{\prime}\right)=s \cdot r+s \cdot r^{\prime}$
(3) $\left(s+s^{\prime}\right) \cdot r=s \cdot r+s^{\prime} \cdot r$
(4) $s \cdot\left(r r^{\prime}\right)=(s \cdot r) r^{\prime}=r\left(s \cdot r^{\prime}\right), 0_{S} \cdot r=0_{R}, s \cdot 0_{R}=0_{R}$,
(5) $\left(s s^{\prime}\right) \cdot r=s \cdot\left(s^{\prime} \cdot r\right)$.

The maps η and l are required to satisfy the following:
(CM1) $\eta(s \cdot r)=s \eta(r)$, for all $s \in S$ and $r \in R$.
(CM2) $\eta(r) \cdot r^{\prime}=r r^{\prime}$, for all $r, r^{\prime} \in R$.
Remark 2.8. Let S and R be algebras and let $\eta: R \rightarrow S$ be an algebra homomorphism. If $l: S \rightarrow \operatorname{End}_{R}(R)$ is a crossed module structure on the homomorphism $\eta: R \rightarrow S$, then $\operatorname{im}(\eta)$ is an ideal of S. Indeed, for all $s \in S$ and $s^{\prime} \in \operatorname{im}(\eta)$ with $s^{\prime}=\eta(r) ; r \in R$, we obtain from (CM1),

$$
s s^{\prime}=s \eta(r)=\eta(s \cdot r) \in \operatorname{im}(\eta)
$$

Thus, $\operatorname{im}(\eta)$ is an ideal of S. Conversely, if I is an ideal of the algebra S, then the inclusion map $I \rightarrow S$ is a crossed module with the natural action of S on I. Further, ker η is an ideal in R and a module over S. The ideal $\operatorname{im}(\eta)$ of S acts trivially on ker η, hence ker η inherits an action of $S / \operatorname{im}(\eta)$ to become an $S / \operatorname{im}(\eta)$-module.

Now let S be an algebra and R be subalgebra of S. Let $\eta: R \rightarrow S$ be the inclusion map and let S / R be the set of cosets of R in S. Then, there is a natural action of S on the set S / R via left multiplication and it is easy to verify that the following statements are equivalent.
(i) R is an ideal of S.
(ii) There exists a crossed module structure on the inclusion map $\eta: R \rightarrow S$.
(iii) There exists an algebra structure on S / R with the action of S on S / R given by

$$
s \cdot\left(s^{\prime}+R\right)=s s^{\prime}+R
$$

for all $s, s^{\prime} \in S$.

3. From an ideal simplicial algebra structure on $\operatorname{Bar}(S, R)$ to an ideal structure on the map $\eta: R \rightarrow S$

In this section we assume that R and S are k-algebras and $\eta: R \rightarrow S$ is a k-algebra homomorphism together with a homomorphism $l: S \rightarrow \operatorname{End}_{R}(R)$ satisfying the conditions $(1)-(5)$ given above. The purpose of this section is to prove that we can recover the crossed module structure (or an ideal structure) on the homomorphism $\eta: R \rightarrow S$ from an ideal simplicial algebra structure on the associated bar construction $\operatorname{Bar}(S, R)$. Thus, we will show that the homomorphisms η and l satisfy the conditions (CM1) and (CM2).

Proposition 3.1. Suppose that $\operatorname{Bar}(S, R)$ is endowed with an ideal simplicial algebra structure. Then
(1) $(0, r) \oplus\left(0, r^{\prime}\right)=\left(0, r+r^{\prime}\right)$ and $(0, r) *\left(0, r^{\prime}\right)=\left(0, r r^{\prime}\right)$ for all $r, r^{\prime} \in R$ where the operations take place in R_{1}, (see Notation 2.6).
(2) The map $l: S \rightarrow \operatorname{End}_{R}(R)$ defined by

$$
l_{s}: r \mapsto s \cdot r
$$

gives an ideal structure (or a crossed module structure) on η, where

$$
(0, s \cdot r)=(s, 0) *(0, r) .
$$

We will give the proof of this proposition using the following Lemmas. Note that Proposition 3.1 together with Lemma 2.7 imply that the map l above is a well defined action of S on R. To prove this proposition, we assume that $\operatorname{Bar}(S, R)$ is endowed with an ideal simplicial algebra structure as defined in subsection 2.2.

Lemma 3.2. Let $k \geqslant 0$ and $r, r^{\prime} \in R$. Then
(i) The zero element of B_{k} is $\left(0_{S}, 0_{R}, \ldots, 0_{R}\right)$,
(ii) $(0,-r, r) \oplus\left(0,0, r^{\prime}\right)=\left(0,-r, r+r^{\prime}\right)$,
(iii) $(-\eta(r), r) \oplus\left(0, r^{\prime}\right)=\left(-\eta(r), r+r^{\prime}\right)$,
(iv) $(0, r) *\left(0, r^{\prime}\right)=\left(0, r r^{\prime}\right)$.

Proof. (i) By definition, the zero element of $B_{0}=S$ is the zero element 0_{S} of S. Then by induction since $s_{0}: B_{k} \rightarrow B_{k+1}$ is an algebra homomorphism, for all $k \geqslant 0$, part (i) follows.
(ii) Applying d_{2}^{2} and using (i), we find that

$$
\left(0_{S},-r, r\right) \oplus\left(0_{S}, 0_{R}, r^{\prime}\right)=\left(0_{S},-r, x\right)
$$

Applying d_{1}^{2} and using (i) again, we find that

$$
\left(0_{S}, r^{\prime}\right)=\left(0_{S},-r+x\right)
$$

so; $x=r+r^{\prime}$ and (ii) holds.
(iii) This part follows from (ii) by applying d_{0}^{2}.
(iv) Since $\operatorname{Bar}(S, R)$ is endowed with an ideal simplicial algebra structure, by definition of B_{1}, we have $d_{0}(s, r)=s+\eta(r), d_{1}(s, r)=s$ and $s_{0}(s)=(s, 0)$ for all $s \in S, r \in R$. If $(s, r) \in \operatorname{ker} d_{1}$, we get $d_{1}(s, r)=s=0_{S}$ and then $(0, r) \in \operatorname{ker} d_{1}$. Therefore, we have

$$
\operatorname{ker} d_{1}=\{(0, r): r \in R\}=\{0\} \times R
$$

and the restriction of d_{0} to $\operatorname{ker} d_{1}$ is given by $d_{0}(0, r)=\eta(r)$ for $r \in R$. Since d_{1} is a homomorphism of algebras from B_{1} to B_{0}, we have ker $d_{1}=\{0\} \times R$ is an ideal of B_{1} with respect to the operations \oplus and $*$. We can also say that there is always a natural injection isomorphism $\theta: R \rightarrow\{0\} \times R$ defined by $\theta(r)=(0, r)$. This satisfies $\theta\left(r r^{\prime}\right)=\theta(r) * \theta\left(r^{\prime}\right)=(0, r) *\left(0, r^{\prime}\right)$, for $r, r^{\prime} \in R$. Thus, for all $r, r^{\prime} \in R$, we get

$$
\left(0, r r^{\prime}\right)=\theta\left(r r^{\prime}\right)=(0, r) *\left(0, r^{\prime}\right)
$$

Therefore, we get the equality $(0, r) *\left(0, r^{\prime}\right)=\left(0, r r^{\prime}\right)$.
Lemma 3.3. Assume that $\eta: R \rightarrow S$ is a k-algebra homomorphism together with the homomorphism $l: S \rightarrow \operatorname{End}_{R}(R)$ satisfying the conditions (1)-(5). Then,

$$
B_{1}=S \ltimes R=\{(s, r): s \in S, r \in R\}
$$

is the semi-direct product algebra of R by S with the following operations:

$$
(s, r) \oplus\left(s^{\prime}, r^{\prime}\right)=\left(s+s^{\prime}, r+r^{\prime}\right), \quad k(s, r)=(k s, k r)
$$

and

$$
(s, r) *\left(s^{\prime}, r^{\prime}\right)=\left(s s^{\prime}, s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right)
$$

for all $s, s^{\prime} \in S$ and $r, r^{\prime} \in R, k \in \mathrm{k}$ where $s \cdot r^{\prime}=l_{s}\left(r^{\prime}\right)$ and $s^{\prime} \cdot r=l_{s^{\prime}}(r)$.
Proof. It is clear that the set $S \ltimes R$ is a k-module with the operations

$$
(s, r) \oplus\left(s^{\prime}, r^{\prime}\right)=\left(s+s^{\prime}, r+r^{\prime}\right)
$$

and

$$
k(s, r)=(k s, k r)
$$

for all $k \in \mathrm{k},(s, r),\left(s^{\prime}, r^{\prime}\right) \in S \ltimes R$. On the other hand, we obtain

$$
\begin{aligned}
\left(s_{1}, r_{1}\right) *\left((s, r) \oplus\left(s^{\prime}, r^{\prime}\right)\right) & =\left(s_{1}, r_{1}\right) *\left(s+s^{\prime}, r+r^{\prime}\right) \\
& =\left(s_{1}\left(s+s^{\prime}\right), s_{1} \cdot\left(r+r^{\prime}\right)+\left(s+s^{\prime}\right) \cdot r_{1}+r_{1}\left(r+r^{\prime}\right)\right) \\
& =\left(s_{1} s+s_{1} s^{\prime}, s_{1} \cdot r+s_{1} \cdot r^{\prime}+s \cdot r_{1}+s^{\prime} \cdot r_{1}+r_{1} r+r_{1} r^{\prime}\right) \\
& =\left(s_{1} s, s_{1} \cdot r+s \cdot r_{1}+r_{1} r\right) \oplus\left(s_{1} s^{\prime}, s_{1} \cdot r^{\prime}+s^{\prime} \cdot r_{1}+r_{1} r^{\prime}\right) \\
& =\left(\left(s_{1}, r_{1}\right) *(s, r)\right) \oplus\left(\left(s_{1}, r_{1}\right) *\left(s^{\prime}, r^{\prime}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(s_{1}, r_{1}\right) *\left((s, r) *\left(s^{\prime}, r^{\prime}\right)\right)= & \left(s_{1}, r_{1}\right) *\left(s s^{\prime}, s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right) \\
= & \left(s_{1}\left(s s^{\prime}\right), s_{1} \cdot\left(s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right)+\left(s s^{\prime}\right) \cdot r_{1}\right. \\
& \left.+r_{1}\left(s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right)\right) \\
= & \left(\left(s_{1} s\right) s^{\prime},\left(s_{1} s\right) \cdot r^{\prime}+\left(s_{1} s^{\prime}\right) \cdot r^{\prime}+s_{1} \cdot\left(r r^{\prime}\right)\right. \\
& \left.+\left(s s^{\prime}\right) \cdot r_{1}+s \cdot\left(r_{1} r^{\prime}\right)+s^{\prime} \cdot\left(r_{1} r\right)+\left(r_{1} r\right) r^{\prime}\right) \\
= & \left(\left(s_{1} s\right) s^{\prime},\left(s_{1} s\right) \cdot r^{\prime}+s^{\prime} \cdot\left(s_{1} \cdot r+s \cdot r_{1}+r_{1} r\right)\right. \\
& \left.+r^{\prime}\left(s_{1} \cdot r+s \cdot r_{1}+r_{1} r\right)\right) \\
= & \left(s_{1} s, s_{1} \cdot r+s \cdot r_{1}+r_{1} r\right) *\left(s^{\prime}, r^{\prime}\right) \\
= & \left(\left(s_{1}, r_{1}\right) *(s, r)\right) *\left(s^{\prime}, r^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
k\left((s, r) *\left(s^{\prime}, r^{\prime}\right)\right) & =k\left(s s^{\prime}, s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right) \\
& =\left(k\left(s s^{\prime}\right), k\left(s \cdot r^{\prime}\right)+k\left(s^{\prime} \cdot r\right)+k\left(r r^{\prime}\right)\right) \\
& =\left((k s) s^{\prime},(k s) \cdot r^{\prime}+s^{\prime} \cdot(k r)+(k r) r^{\prime}\right) \\
& =(k s, k r) *\left(s^{\prime}, r^{\prime}\right) \\
& =(k(s, r)) *\left(s^{\prime}, r^{\prime}\right) \\
& =(s, r) *\left(k\left(s^{\prime}, r^{\prime}\right)\right)
\end{aligned}
$$

for $k \in \mathrm{k},\left(s_{1}, r_{1}\right),(s, r),\left(s^{\prime}, r^{\prime}\right) \in S \ltimes R$. Since S and R are commutative k-algebras, we get

$$
\begin{aligned}
(s, r) *\left(s^{\prime}, r^{\prime}\right) & =\left(s s^{\prime}, s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right) \\
& =\left(s^{\prime} s, s^{\prime} \cdot r+s \cdot r^{\prime}+r^{\prime} r\right) \\
& =\left(s^{\prime}, r^{\prime}\right) *(s, r) .
\end{aligned}
$$

Therefore, $S \ltimes R$ is a commutative k-algebra.
Remark 3.4. We assume that $\eta: R \rightarrow S$ is a k-algebra homomorphism together with the homomorphism $l: S \rightarrow \operatorname{End}_{R}(R)$. Using the semi-direct product algebra of R by S, we get

$$
\left(0_{S}, r\right) *\left(0_{S}, r^{\prime}\right)=\left(0_{S} 0_{S}, 0_{S} \cdot r^{\prime}+0_{S} \cdot r+r r^{\prime}\right)=\left(0_{S}, r r^{\prime}\right)
$$

where the action of S on R is given by l. For zero element of S, we get zero homomorphism $l_{0_{S}}: R \rightarrow R$ in $E n d_{R}(R)$ which is defined by $l_{0_{S}}: r \mapsto 0_{R}$.

Lemma 3.5. The map $\Phi: S \ltimes R \rightarrow S$ defined by $\Phi(s, r)=s+\eta(r)$ is a homomorphism of algebras if and only if η satisfies (CM1) above.
Proof. First we suppose that η satisfies condition (CM1). Then, we obtain for all $(s, r),\left(s^{\prime}, r^{\prime}\right) \in S \ltimes R$,

$$
\begin{aligned}
\Phi\left((s, r) \oplus\left(s^{\prime}, r^{\prime}\right)\right) & =\Phi\left(\left(s+s^{\prime}, r+r^{\prime}\right)\right) \\
& =s+s^{\prime}+\eta\left(r+r^{\prime}\right) \\
& =s+\eta(r)+s^{\prime}+\eta\left(r^{\prime}\right) \\
& =\Phi(s, r)+\Phi\left(s^{\prime}, r^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi\left((s, r) *\left(s^{\prime}, r^{\prime}\right)\right) & =\Phi\left(s s^{\prime}, s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right) \\
& =s s^{\prime}+\eta\left(s \cdot r^{\prime}+s^{\prime} \cdot r+r r^{\prime}\right) \\
& =s s^{\prime}+s \eta\left(r^{\prime}\right)+s^{\prime} \eta(r)+\eta(r) \eta\left(r^{\prime}\right) \quad \text { since }(C M 1) \\
& =s\left(s^{\prime}+\eta\left(r^{\prime}\right)\right)+\eta(r)\left(s^{\prime}+\eta\left(r^{\prime}\right)\right) \\
& =(s+\eta(r))\left(s^{\prime}+\eta\left(r^{\prime}\right)\right) \\
& =\Phi((s, r)) \Phi\left(\left(s^{\prime}, r^{\prime}\right)\right) .
\end{aligned}
$$

Conversely, we suppose now that Φ is a homomorphism of algebras. We get $\Phi((s, 0) *$ $(0, r))=\Phi(0, s \cdot r)=\eta(s \cdot r)$. On the other hand, we have $\Phi(s, 0) \Phi(0, r)=(s+\eta(0))(0+$ $\eta(r))=s \eta(r)$. That is, we obtain $\eta(s \cdot r)=s \eta(r)$ and this is $(C M 1)$.

Lemma 3.6. Consider the action of R on itself via multiplication and form the semi-direct product $R \ltimes R$ with respect to this action. Thus

$$
(a, b) \oplus(c, d)=(a+c, b+d)
$$

and

$$
(a, b) *(c, d)=(a c, a d+b c+b d), a, b, c, d \in R
$$

Then, the map $\Phi: R \ltimes R \rightarrow S \ltimes R$ defined by $(a, b) \mapsto(\eta(a), b)$ is a homomorphism if and only if η satisfies (CM2).

Proof. Suppose that η satisfies condition (CM2). Then, for all $(a, b),(c, d) \in R \ltimes R$, we obtain

$$
\begin{aligned}
\Phi((a, b) \oplus(c, d)) & =\Phi((a+c, b+d)) \\
& =(\eta(a+c), b+d) \\
& =(\eta(a), b)+(\eta(c), d) \\
& =\Phi(a, b)+\Phi(c, d)
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi(a, b) * \Phi(c, d) & =(\eta(a), b) *(\eta(c), d) \\
& =(\eta(a) \eta(c), \eta(a) \cdot d+\eta(c) \cdot b+b d) \\
& =(\eta(a c), a d+b c+b d) \quad \text { since }(C M 2) \\
& =\Phi(a c, a d+b c+b d) \\
& =\Phi((a, b) *(c, d)) .
\end{aligned}
$$

Now suppose that Φ is a homomorphism. Then we have $\Phi((a, 0) *(0, r))=\Phi(0, a r)=$ $(\eta(0), a r)=(0, a r)$. On the other hand, we have $\Phi(a, 0) * \Phi(0, r)=(\eta(a), 0) *(0, r)=$ $(0, \eta(a) \cdot r)$. Therefore we obtain $\eta(a) \cdot r=a r$ and this is (CM2).

Lemma 3.7. Let $a_{i}, b_{i} \in R$. Then
(i)
$\left(0_{S}, a_{1}, \ldots, a_{k}\right) *\left(0_{S}, b_{1}, \ldots, b_{k}\right)=\left(0_{S}, a_{1} b_{1}, a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right), \ldots,\left(\sum_{i=1}^{k-1} a_{i}\right) b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right)$.
(ii) Let $s \in S$ and $\left(0_{S}, a_{1}, a_{2}, \ldots, a_{k}\right) \in R_{k}$. Then

$$
\left(0_{S}, a_{1}, \ldots, a_{k}\right) *\left(s, 0_{R}, \ldots, 0_{R}\right)=\left(0_{S}, s \cdot a_{1}, s \cdot a_{2}, \ldots, s \cdot a_{k}\right)
$$

Proof. We prove (i) by induction on k. For $k=1$, from Lemma 3.2 (iv), it is easy to see that

$$
\left(0_{S}, a_{1}\right) *\left(0_{S}, b_{1}\right)=\left(0_{S}, a_{1} b_{1}\right)
$$

Then, by applying d_{k} and induction, we see that

$$
\left(0_{S}, a_{1}, \ldots, a_{k}\right) *\left(0_{S}, b_{1}, \ldots, b_{k}\right)=\left(0_{S}, a_{1} b_{1}, \ldots,\left(\sum_{i=1}^{k-2} a_{i}\right) b_{k-1}+a_{k-1} \sum_{i=1}^{k-1} b_{i}, x\right)
$$

Applying d_{k-1} and induction once more we get that

$$
\begin{aligned}
& \left(0_{S}, a_{1} b_{1}, \ldots,\left(\sum_{i=1}^{k-2} a_{i}\right) b_{k-1}+a_{k-1} \sum_{i=1}^{k-1} b_{i}+x\right) \\
& =\left(0_{S}, a_{1}, \ldots, a_{k-1}+a_{k}\right) *\left(0_{S}, b_{1}, \ldots, b_{k-1}+b_{k}\right) \\
& =\left(0_{S}, a_{1} b_{1}, \ldots, \sum_{i=1}^{k-2} a_{i}\left(b_{k-1}+b_{k}\right)+\left(a_{k-1}+a_{k}\right) \sum_{i=1}^{k} b_{i}\right) \\
& =\left(0_{S}, a_{1} b_{1}, \ldots, \sum_{i=1}^{k-2} a_{i}\left(b_{k-1}\right)+\sum_{i=1}^{k-2} a_{i}\left(b_{k}\right)+a_{k-1} \sum_{i=1}^{k} b_{i}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
& =\left(0_{S}, a_{1} b_{1}, \ldots, \sum_{i=1}^{k-2} a_{i}\left(b_{k-1}\right)+a_{k-1} \sum_{i=1}^{k-1} b_{i}+a_{k-1} b_{k}+\sum_{i=1}^{k-2} a_{i}\left(b_{k}\right)+\left(a_{k}\right) \sum_{i=1}^{k} b_{i}\right) .
\end{aligned}
$$

It follows that

$$
x=\left(\sum_{i=1}^{k-1} a_{i}\right) b_{k}+a_{k} \sum_{i=1}^{k} b_{i} .
$$

(ii) By induction on k similarly, we prove Part (ii). For $k=1$, we have

$$
\left(0_{S}, a_{1}\right) *\left(s, 0_{R}\right)=\left(0_{S}, s \cdot a_{1}\right)
$$

Applying d_{k} using induction we see that for $k-1$

$$
\left(0_{S}, a_{1}, \ldots, a_{k}\right) *\left(s, 0_{R}, \ldots, 0_{R}\right)=\left(0_{S}, s \cdot a_{1}, s \cdot a_{2}, \ldots, s \cdot a_{k-1}, x\right)
$$

Then applying d_{k-1} using induction, we get that

$$
\begin{aligned}
\left(0_{S}, s \cdot a_{1}, \ldots, s \cdot a_{k-1}+x\right) & =\left(0_{S}, a_{1}, \ldots, a_{k-1}+a_{k}\right) *\left(s, 0_{R}, \ldots, 0_{R}\right) \\
& =\left(0_{S}, s \cdot a_{1}, \ldots, s \cdot\left(a_{k-1}+a_{k}\right)\right)
\end{aligned}
$$

and so, $x=s \cdot a_{k}$.
Proposition 3.8. The homomorphism $l: S \rightarrow \operatorname{End}_{R}(R)$ is an ideal structure (or a crossed module structure) on the map $\eta: R \rightarrow S$.

Proof. Since $B_{1}=S \ltimes R$, and since the homomorphism

$$
d_{0}: S \ltimes R=B_{1} \rightarrow B_{0}=S
$$

is defined by $d_{0}(s, r)=s^{r}=s+\eta(r)$, Lemma 3.5 implies that (CM1) holds for the map $\eta: R \rightarrow S$. Notice that by Lemma 3.7 the subalgebra R_{2} is isomorphic to $R \ltimes R$. Further, the map d_{0} restricted to R_{2} is given by $d_{0}\left(0_{S}, a, b\right)=(\eta(a), b)$ and it is a homomorphism from $R \ltimes R$ to $S \ltimes R$ given by $(a, b) \mapsto(\eta(a), b)$. Hence by Lemma 3.6, (CM2) holds for the map η.

Let $\left(s, a_{1}, \ldots, a_{k}\right),\left(s^{\prime}, b_{1}, \ldots, b_{k}\right) \in B_{k}$. Then from the above results we get

$$
\begin{aligned}
\left(s, a_{1}, \ldots, a_{k}\right) *\left(s^{\prime}, b_{1}, \ldots, b_{k}\right)= & \left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right. \\
& \left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right)
\end{aligned}
$$

and

$$
\left(s, a_{1}, \ldots, a_{k}\right) \oplus\left(s^{\prime}, b_{1}, \ldots, b_{k}\right)=\left(s+s^{\prime}, a_{1}+b_{1}, \ldots, a_{k}+b_{k}\right) .
$$

4. From an ideal structure on $\eta: R \rightarrow S$ to an ideal simplicial algebra structure on $\operatorname{Bar}(S, R)$.

In this section S and R are algebras and $\eta: R \rightarrow S, l: S \rightarrow \operatorname{End}_{R}(R)$ are algebra homomorphisms. Recall that we denote

$$
l_{s}: r \mapsto l_{s}(r)=s \cdot r
$$

for $s \in S$ and $r \in R$. We assume that l is an ideal structure or a crossed module structure on η. We let $\operatorname{Bar}(S, R)$ denote the bar construction using the action of the k-algebra R on the underlying k-module S of the algebra S via $s \mapsto s+\eta(r)$ for all $s \in S$ and $r \in R$. Our aim in this section is to show that the crossed module structure l leads to an ideal simplicial algebra structure on $\operatorname{Bar}(S, R)$.

We start by defining a multiplication on B_{k} for all $k \geqslant 0$. For $k=0, B_{0}=S$ and the operations are as in S. Obviously, from simplicial structure $\operatorname{Bar}(S, R)$, for $k \geqslant 1$, we can denote the addition by

$$
\left(s, a_{1}, \ldots, a_{k}\right) \oplus\left(s^{\prime}, b_{1}, \ldots, b_{k}\right)=\left(s+s^{\prime}, a_{1}+b_{1}, \ldots, a_{k}+b_{k}\right)
$$

We can define the multiplication by

$$
\begin{aligned}
\left(s, a_{1}, \ldots, a_{k}\right) *\left(s^{\prime}, b_{1}, \ldots, b_{k}\right)= & \left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right)\right. \\
& \left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right)
\end{aligned}
$$

as illustrated above.
Theorem 4.1. Let $k \geqslant 0$. Then
(i) B_{k} is an algebra,
(ii) the k-module homomorphism

$$
d_{0}:\left(s, a_{1}, \ldots, a_{k}\right) \mapsto\left(s+\eta\left(a_{1}\right), a_{2}, \ldots, a_{k}\right)
$$

is a k-algebra homomorphism from B_{k} to B_{k-1},
(iii) the k-module homomorphisms

$$
d_{i}:\left(s, a_{1}, \ldots, a_{k}\right) \mapsto\left(s, a_{1}, \ldots, a_{i-1}+a_{i}, \ldots, a_{k}\right)
$$

are k-algebra homomorphisms from B_{k} to B_{k-1} for all $1 \leqslant i \leqslant k-1$,
(iv) the k -module homomorphism

$$
d_{k}:\left(s, a_{1}, \ldots, a_{k}\right) \mapsto\left(s, a_{1}, \ldots, a_{k-1}\right)
$$

is a k -algebra homomorphism from B_{k} to B_{k-1},
(v) the k -module homomorphisms

$$
s_{i}:\left(s, a_{1}, \ldots, a_{k}\right) \mapsto\left(s, a_{1}, \ldots, a_{i}, 0, a_{i+1}, \ldots, a_{k}\right)
$$

are k -algebra homomorphisms for all $0 \leqslant i \leqslant k$.
Proof. (i) For each $k \geqslant 1$ define

$$
\eta_{k}:\left(s, a_{1}, \ldots, a_{k}\right) \mapsto s+\eta\left(a_{1}+\ldots+a_{k}\right)
$$

from B_{k} to S. We prove that B_{k} is an algebra and that η_{k} is an algebra homomorphism. For $k=1$, this is Lemma 3.5. Suppose that this holds for $k-1$. Then B_{k-1} acts on R via

$$
\left(s, a_{1}, \ldots, a_{k-1}\right): a \mapsto a \cdot\left(s+\eta\left(a_{1}+\ldots+a_{k-1}\right)\right)
$$

for $\left(s, a_{1}, \ldots, a_{k-1}\right) \in B_{k-1}$ and $a \in R$. Notice that B_{k} is just the semi-direct product algebra $B_{k-1} \ltimes R$ with respect to this action, so B_{k} is an algebra. To show that η_{k} is an
algebra homomorphism, we obtain

$$
\begin{aligned}
& \eta_{k}\left(\left(s, a_{1}, \ldots, a_{k}\right) *\left(s^{\prime}, b_{1}, \ldots, b_{k}\right)\right) \\
&= \eta_{k}\left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right. \\
&\left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
&= s s^{\prime}+\eta\left(s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}+s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right)+\right. \\
&\left.\ldots+s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
&= s s^{\prime}+s \eta\left(b_{1}\right)+s^{\prime} \eta\left(a_{1}\right)+\eta\left(a_{1}\right) \eta\left(b_{1}\right)+s \eta\left(b_{2}\right)+s^{\prime} \eta\left(a_{2}\right)+\eta\left(a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right)\right) \\
& \ldots+s \eta\left(b_{k}\right)+s^{\prime} \eta\left(a_{k}\right)+\sum_{i=1}^{k-1} \eta\left(a_{i}\right) \eta\left(b_{k}\right)+\eta\left(a_{k}\right) \sum_{i=1}^{k} \eta\left(b_{i}\right) \\
&= s\left(s^{\prime}+\sum_{i=1}^{k} \eta\left(b_{i}\right)\right)+\left(\sum_{i=1}^{k} \eta\left(a_{i}\right)\right)\left(s^{\prime}+\sum_{i=1}^{k} \eta\left(b_{i}\right)\right) \\
&=\left(s+\eta\left(a_{1}+\ldots+a_{k}\right)\right)\left(s^{\prime}+\eta\left(b_{1}+\ldots+b_{k}\right)\right) \\
&= \eta_{k}\left(s, a_{1}, \ldots, a_{k}\right) \eta_{k}\left(s^{\prime}, b_{1}, \ldots, b_{k}\right) .
\end{aligned}
$$

(ii) Let

$$
u=\left(s, a_{1}, \ldots, a_{k}\right), v=\left(s^{\prime}, b_{1}, \ldots, b_{k}\right) \in B_{k} .
$$

Then we obtain

$$
\begin{aligned}
d_{0}(u * v)= & d_{0}\left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right. \\
& \left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
= & \left(s s^{\prime}+s \eta\left(b_{1}\right)+s^{\prime} \eta\left(a_{1}\right)+\eta\left(a_{1}\right) \eta\left(b_{1}\right), s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right. \\
& \left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
= & \left(\left(s+\eta\left(a_{1}\right)\left(s^{\prime}+\eta\left(b_{1}\right)\right), s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right.\right. \\
& \left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
= & \left(s+\eta a_{1}, a_{2}, \ldots, a_{k}\right)\left(s^{\prime}+\eta b_{1}, b_{2}, \ldots, b_{k}\right) \\
= & d_{0}(u) * d_{0}(v) .
\end{aligned}
$$

(iii) Let

$$
u=\left(s, a_{1}, \ldots, a_{k}\right), v=\left(s^{\prime}, b_{1}, \ldots, b_{k}\right) \in B_{k}
$$

We shall show that the k -module homomorphisms d_{i} are k -algebra homomorphisms for $0 \leqslant i \leqslant k-1$. We calculate

$$
\begin{aligned}
& d_{i}(u * v)= d_{i}\left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right. \\
&\left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
&=\left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \quad \ldots, s \cdot b_{i-1}+s^{\prime} \cdot a_{i-1}+b_{i-1} \sum_{j=1}^{i-2} a_{j}+a_{i-1} \sum_{j=1}^{i-1} b_{j} \\
& +s \cdot b_{i}+s^{\prime} \cdot a_{i}+b_{i} \sum_{j=1}^{i-1} a_{j}+a_{i} \sum_{j=1}^{i} b_{j}, \\
& \quad \\
& \left.\quad \ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
& =\left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, \ldots, s^{\prime} \cdot\left(a_{i-1}+a_{i}\right)+s \cdot\left(b_{i-1}+b_{i}\right)\right. \\
& \quad+\left(b_{i-1}+b_{i}\right) \sum_{j=1}^{i-2} a_{j}+\left(a_{i-1}+a_{i}\right) \sum_{j=1}^{i-1} b_{j}+\left(a_{i-1}+a_{i}\right) b_{i}, \\
& \left.\quad \ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) \\
& =\left(s, a_{1}, \ldots, a_{i-1}+a_{i}, \ldots, a_{k}\right)\left(s^{\prime}, b_{1}, \ldots, b_{i-1}+b_{i}, \ldots, b_{k}\right) \\
& =
\end{aligned}
$$

for $0 \leqslant i \leqslant k-1$, so Part (iii) holds.
(iv) In any semi-direct product, since the projection on to the first coordinate is a homomorphism, the map

$$
d_{k}:\left(s, a_{1}, \ldots, a_{k}\right) \mapsto\left(s, a_{1}, \ldots, a_{k-1}\right)
$$

is a homomorphism from B_{k} to B_{k-1} for $k \geqslant 1$.
(v) We leave it to the reader.

5. The mutual inverse relation between above associations

Let $\eta: R \rightarrow S$ be an algebra homomorphism together with $l: S \rightarrow \operatorname{End}_{R}(R)$. We showed how to start with an ideal simplicial algebra structure on $\operatorname{Bar}(S, R)$ and obtain a crossed module structure on η and we showed how to start with a crossed module structure on η and obtain an ideal simplicial algebra structure on the associated simplicial \mathbf{k}-module $\operatorname{Bar}(S, R)$. Our aim in this section is to make the observation that these two associations are mutual inverses.

First assume that the simplicial k-module $\operatorname{Bar}(S, R)$ is endowed with an ideal simplicial algebra structure, and denote the multiplication in B_{k} as

$$
\left(s, a_{1}, \ldots, a_{k}\right) *\left(s^{\prime}, b_{1}, \ldots, b_{k}\right) .
$$

We showed that the action $l: S \rightarrow \operatorname{End}_{R}(R)$ given by $l_{s}: r \mapsto s \cdot r$ gives an crossed module structure on η. Further, given this crossed module structure on η, the equation

$$
\begin{aligned}
&\left(s, a_{1}, \ldots, a_{k}\right) *\left(s^{\prime}, b_{1}, \ldots, b_{k}\right)=\left(s s^{\prime}, s \cdot b_{1}+s^{\prime} \cdot a_{1}+a_{1} b_{1}, s \cdot b_{2}+s^{\prime} \cdot a_{2}+a_{1} b_{2}+a_{2}\left(b_{1}+b_{2}\right),\right. \\
&\left.\ldots, s \cdot b_{k}+s^{\prime} \cdot a_{k}+\sum_{i=1}^{k-1} a_{i} b_{k}+a_{k} \sum_{i=1}^{k} b_{i}\right) .
\end{aligned}
$$

tells us how to define an ideal simplicial algebra structure on B_{k} with the multiplication '*'.

Conversely let $l: S \rightarrow \operatorname{End}_{R}(R)$ be an ideal structure (or a crossed module structure) on η. Let ' $*$ ' be the multiplication in B_{k} as given above. Let $l^{\prime}: S \rightarrow \operatorname{End}_{R}(R)$ be the crossed module structure on η. That is for all $s \in S, l_{s}^{\prime}: r \mapsto s^{\prime}$ where $\left(0, s^{\prime}\right)=(s, 0) *(0, r)$. Now by definition of the operation $*$, we obtain

$$
(s, 0) *(0, r)=(0 s, s \cdot r+0.0+0 \cdot r)=(0, s \cdot r) .
$$

We thus see that $s^{\prime}=s \cdot r$ for all $r \in R, s \in S$, that is $l_{s}^{\prime}=l_{s}$ for all $s \in S$. This completes the observation that the two associations are mutual inverses.

6. Crossed ideal maps between ideal maps

We explored above that a homomorphism of algebras $\eta: R \rightarrow S$ together with an ideal structure (or crossed module structure) preserves the ideals of R. This ideal approach to crossed modules shades some light on ideals of Loday's crossed square (cf. [11]). That is, we consider the same thing for crossed ideals of crossed modules. In this section, we will provide an extension of this result for higher dimensional crossed modules of algebras. We see that if there is a (crossed) ideal structure over a morphism between crossed modules, then this map preserves the (crossed) ideals.

First we recall the definition of 'crossed ideal' of a crossed module of algebras from [15].
Definition 6.1. A homomorphism of algebras $\eta^{\prime}: R^{\prime} \rightarrow S^{\prime}$ will be called a crossed ideal of the crossed module $\eta: R \rightarrow S$ in the category of crossed modules over k-algebras if:
$\mathfrak{C} 1: \eta^{\prime}: R^{\prime} \rightarrow S^{\prime}$ is a subcrossed module of $\eta: R \rightarrow S$, that is, the following conditions are satisfied:
(i) R^{\prime} is a subalgebra of R and S^{\prime} is a subalgebra of S.
(ii) the action of S^{\prime} on R^{\prime} induced by the action of S on R.
(iii) $\eta^{\prime}: R^{\prime} \rightarrow S^{\prime}$ is a crossed module.
(iv) the following diagram of morphisms of crossed modules

commutes, where μ and ν are the inclusions,
$\mathfrak{C I 2} 2: R^{\prime} R=R R^{\prime} \subseteq R^{\prime}$ and $S S^{\prime}=S^{\prime} S \subseteq S^{\prime}$,
$\mathfrak{C} 3$: $R \cdot S^{\prime}=S^{\prime} \cdot R \subseteq R^{\prime}$,
$\mathfrak{C} 4$: R^{\prime} is closed under the action of S, i.e. $S \cdot R^{\prime}=R^{\prime} \cdot S \subseteq R^{\prime}$.

6.1. Crossed ideal structure over maps between crossed modules

Assume that $\eta_{1}: R_{1} \rightarrow S_{1}$ and $\eta_{2}: R_{2} \rightarrow S_{2}$ are crossed modules. Let $\alpha:\left(\alpha_{1}, \alpha_{2}\right)$ be a morphism from η_{1} to η_{2} in the category of crossed modules of k-algebras, where $\alpha_{1}: R_{1} \rightarrow R_{2}$ and $\alpha_{2}: S_{1} \rightarrow S_{2}$ are homomorphisms of k-algebras. In this case, the morphism $\alpha:=\left(\alpha_{1}, \alpha_{2}\right)$ satisfies the following conditions:
(i) the diagram

commutes, i.e. $\alpha_{2} \eta_{1}=\eta_{2} \alpha_{1}$,
(ii) for all $s_{1} \in S_{1}$ and $r_{1} \in R_{1}$,

$$
\alpha_{1}\left(l_{s_{1}}\left(r_{1}\right)\right)=l_{\alpha_{2}\left(s_{1}\right)}\left(\alpha_{1}\left(r_{1}\right)\right) \text { or } \alpha_{1}\left(s_{1} \cdot r_{1}\right)=\alpha_{2}\left(s_{1}\right) \cdot\left(\alpha_{1}\left(r_{1}\right)\right) \text {. }
$$

Definition 6.2. A morphism $\alpha:=\left(\alpha_{1}, \alpha_{2}\right)$ between crossed modules η_{1} and η_{2} is called a crossed ideal map if
(i) there are ideal map structures over the homomorphisms α_{1}, α_{2} and $\eta_{2} \alpha_{1}=\alpha_{2} \eta_{1}$, and
(ii) there is an S_{2}-bilinear map $h: R_{2} \times S_{1} \rightarrow R_{1}$ satisfying the conditions:
(a) $\alpha_{1}\left(h\left(r_{2}, s_{1}\right)\right)=\alpha_{2}\left(s_{1}\right) \cdot r_{2}$,
(b) $\eta_{1}\left(h\left(r_{2}, s_{1}\right)\right)=\eta_{2}\left(r_{2}\right) \cdot s_{1}$,
(c) $h\left(\alpha_{1}\left(r_{1}\right), s_{1}\right)=s_{1} \cdot r_{1}$,
(d) $h\left(r_{2}, \eta_{1}\left(r_{1}\right)\right)=r_{2} \cdot r_{1}$
for all $r_{2} \in R_{2}, s_{1} \in S_{1}$.
Remark 6.3. A crossed ideal structure over the map α between crossed modules η_{1} and η_{2} gives a crossed square structure of algebras on the square

defined by Ellis in [6].
Thus, we get the following result.
Proposition 6.4. If the morphism $\alpha:\left(\alpha_{1}, \alpha_{2}\right)$ is a crossed ideal map from $\left(\eta_{1}: R_{1} \rightarrow S_{1}\right)$ to $\left(\eta_{2}: R_{2} \rightarrow S_{2}\right)$ in the category of crossed modules of k -algebras, then $\alpha\left(\eta_{1}\right): \alpha_{1}\left(R_{1}\right) \rightarrow$ $\alpha_{2}\left(S_{1}\right)$ is a crossed ideal of the crossed module $\eta_{2}: R_{2} \rightarrow S_{2}$.
Proof. First we consider the following square

where μ and ν are the inclusions. The map $\overline{\eta_{2}}: R_{1}^{\prime} \rightarrow S_{1}^{\prime}$ is defined by the restriction of the map η_{2} to the subalgebra $\alpha_{1}\left(R_{1}\right)$ of R_{2}. We will show that the restricted homomorphism $\overline{\eta_{2}}$ is a crossed ideal of η_{2}.
$\mathfrak{C} I 1$. We will show that $\overline{\eta_{2}}$ is a subcrossed module of η_{2}.
(i) It is clear that R_{1}^{\prime} is a subalgebra of R_{2} and similarly $\alpha_{2}\left(S_{1}\right)=S_{1}^{\prime}$ is a subalgebra of S_{2}.
(ii) Since the map $\alpha:=\left(\alpha_{1}, \alpha_{2}\right)$ is a crossed module morphism, it satisfies the condition $\alpha_{2}\left(s_{1}\right) \cdot\left(\alpha_{1} r_{1}\right)=\alpha_{1}\left(s_{1} \cdot r_{1}\right)$ for all $r_{1} \in R_{1}$ and $s_{1} \in S_{1}$. Then the algebra action of $\alpha_{2}\left(s_{1}\right) \in S_{1}^{\prime}$ on $\alpha_{1}\left(r_{1}\right) \in R_{1}^{\prime}$ can be given by $\alpha_{2}\left(s_{1}\right) \cdot \alpha_{1}\left(r_{1}\right)=\alpha_{1}\left(s_{1} \cdot r_{1}\right) \in R_{1}^{\prime}$.
(iii) We will show that $\overline{\eta_{2}}: R_{1}^{\prime} \rightarrow S_{1}^{\prime}$ is a crossed module. For all $\alpha_{2}\left(s_{1}\right) \in S_{1}^{\prime}$ and $\alpha_{1}\left(r_{1}\right), \alpha_{1}\left(r_{1}^{\prime}\right) \in R_{1}^{\prime}$, we obtain

$$
\begin{aligned}
\overline{\eta_{2}}\left(\alpha_{2}\left(s_{1}\right) \cdot\left(\alpha_{1}\left(r_{1}\right)\right)\right) & =\eta_{2} \alpha_{1}\left(s_{1} \cdot r_{1}\right) \\
& =\alpha_{2} \eta_{1}\left(s_{1} \cdot r_{1}\right) \\
& =\alpha_{2}\left(s_{1} \eta_{1}\left(r_{1}\right)\right)\left(\text { since } \eta_{1} \text { is a crossed module }\right) \\
& =\alpha_{2}\left(s_{1}\right) \alpha_{2} \eta_{1}\left(r_{1}\right) \\
& =\alpha_{2}\left(s_{1}\right) \eta_{2} \alpha_{1}\left(r_{1}\right) \\
& =\alpha_{2}\left(s_{1}\right) \overline{\eta_{2}}\left(\alpha_{1}\left(r_{1}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{\eta_{2}}\left(\alpha_{1}\left(r_{1}\right)\right) \cdot \alpha_{1}\left(r_{1}^{\prime}\right) & =\alpha_{2}\left(\eta_{1}\left(r_{1}\right)\right) \cdot \alpha_{1}\left(r_{1}^{\prime}\right) \\
& =\alpha_{1}\left(\eta_{1}\left(r_{1}\right) \cdot\left(r_{1}^{\prime}\right)\right) \\
& =\alpha_{1}\left(r_{1} r_{1}^{\prime}\right)\left(\text { since } \eta_{1} \text { is a crossed module }\right) \\
& =\alpha_{1}\left(r_{1}\right) \alpha_{1}\left(r_{1}^{\prime}\right)
\end{aligned}
$$

(iv) the square

is commutative, because μ and ν are the inclusions and $\overline{\eta_{2}}$ is given by the restriction of η_{2}. Thus $\overline{\eta_{2}}$ is a subcrossed module of η_{2}.
$\mathfrak{C I 2}$. Since there are ideal structures over the maps $\alpha_{1}: R_{1} \rightarrow R_{2}$ and $\alpha_{2}: S_{1} \rightarrow S_{2}$, we obtain that $\alpha_{1}\left(R_{1}\right)=R_{1}^{\prime}$ and $\alpha_{2}\left(S_{1}\right)=S_{1}^{\prime}$ are ideals of R_{2} and S_{2} respectively. Therefore, we obtain

$$
R_{1}^{\prime} R_{2}=R_{2} R_{1}^{\prime} \subseteq R_{1}^{\prime} \text { and } S_{1}^{\prime} S_{2}=S_{2} S_{1}^{\prime} \subseteq S_{1}^{\prime}
$$

$\mathfrak{C} 33$. We have to show that $R_{2} \cdot S_{1}^{\prime}=S_{1}^{\prime} \cdot R_{2} \subseteq R_{1}^{\prime}$. We use the h-map to prove it. For all $\alpha_{2}\left(s_{1}\right) \in S_{1}^{\prime}$ and $r_{2} \in R_{2}$ we have $r_{2} \cdot \alpha_{2}\left(s_{1}\right)=\alpha_{2}\left(s_{1}\right) \cdot r_{2}=l_{\alpha_{2}\left(s_{1}\right)}\left(r_{2}\right)=\alpha_{1}\left(h\left(r_{2}, s_{1}\right)\right)$, where $h\left(r_{2}, s_{1}\right) \in R_{1}$, then we obtain $r_{2} \cdot \alpha_{2}\left(s_{1}\right)=\alpha_{2}\left(s_{1}\right) \cdot r_{2} \in \alpha_{1}\left(R_{1}\right)=R_{1}^{\prime}$ so that $R_{2} \cdot S_{1}^{\prime}=S_{1}^{\prime} \cdot R_{2} \subseteq R_{1}^{\prime}$.
$\mathfrak{C} 44$. We have to show that $S_{2} \cdot R_{1}^{\prime}=R_{1}^{\prime} \cdot S_{2} \subseteq R_{1}^{\prime}$. For all $s_{2} \in S_{2}$ and $\alpha_{1}\left(r_{1}\right) \in R_{1}^{\prime}$, we can define the action by $s_{2} \cdot \alpha_{1}\left(r_{1}\right)=l_{s_{2}}\left(\alpha_{1}\left(r_{1}\right)\right)=\alpha_{1}\left(s_{2} \cdot\left(r_{1}\right)\right) \in R_{1}^{\prime}$. Thus R_{1}^{\prime} is closed under the action of S_{2} and this completes the proof.

Conversely, we can easily state that given a crossed ideal $\overline{\eta_{2}}: R_{1}^{\prime} \rightarrow S_{1}^{\prime}$ of the crossed module $\eta_{2}: R_{2} \rightarrow S_{2}$, then inclusion morphism from $\overline{\eta_{2}}$ to η_{2} is a crossed ideal map in the category of crossed modules of k-algebras.

Indeed, if $\overline{\eta_{2}}$ is a crossed ideal of η_{2} in the following diagram,

the inclusion morphisms μ and ν are crossed modules with the natural actions of R_{2} and S_{2} on their ideals R_{1}^{\prime} and S_{1}^{\prime} given by the multiplication, respectively. Further, the h-map $h: R_{2} \times S_{1}^{\prime} \rightarrow R_{1}^{\prime}$ is defined by $h\left(r_{2}, s_{1}^{\prime}\right)=\left(\left.l\right|_{S_{1}^{\prime}}\right)_{s_{1}^{\prime}}\left(r_{2}\right)$, where $\left.l\right|_{S_{1}^{\prime}}$ is the restriction of $l: S_{2} \rightarrow \operatorname{End}\left(R_{2}\right)$ to S_{1}^{\prime}.

7. From the morphism $\alpha: \eta_{1} \rightarrow \eta_{2}$ to the usual bar construction

In [9], Farjoun and Segev proved that a crossed module map $l: G \rightarrow \operatorname{Aut}(N)$, which they call a normal structure on the map $N \rightarrow G$ is inversely associated with a group structure on the homotopy quotient $G / / N:=\operatorname{hocomlim}_{N} G$ by taking $G / / N$ to be the usual bar construction. They also stated in section 6 of their work, for a morphism from a normal map $X \rightarrow G$ to a normal map $Y \rightarrow H$ in the category of normal maps, one can form a simplicial group morphism $X / / G \rightarrow Y / / H$ and the homotopy quotient $(Y / / H) / /(X / / G)$. In fact, if there is a normal map structure over the simplicial group morphism $X / / G \rightarrow Y / / H$, then $(Y / / H) / /(X / / G)$ is a bisimplicial group. In this section, we make some remarks concerning these ideas over k-algebras.

Recall that a functor $\mathbf{E} ., .:(\Delta \times \Delta)^{o p} \rightarrow \mathbf{A l g}$ is called a bisimplicial algebra, where Δ is the category of finite ordinals and $\mathbf{A l g}$ is the category of (commutative) k-algebras.

Hence \mathbf{E}. , . is equivalent to giving for each (p, q) an algebra $E_{p, q}$ and morphisms:

$$
\begin{aligned}
& d_{i}^{h^{(p q)}}: E_{p, q} \rightarrow E_{p-1, q} \\
& s_{i}^{h^{(p q)}}: E_{p, q} \rightarrow E_{p+1, q} \quad 0 \leq i \leq p \\
& d_{j}^{v^{(p q)}}: E_{p, q} \rightarrow E_{p, q-1} \\
& s_{j}^{v^{(p q)}}: E_{p, q} \rightarrow E_{p, q+1} \quad 0 \leq j \leq q
\end{aligned}
$$

such that the maps $d_{i}^{h^{(p q)}}, s_{i}^{h^{(p q)}}$ commute with $d_{j}^{v^{(p q)}}, s_{j}^{v^{(p q)}}$ and that $d_{i}^{h^{(p q)}}, s_{i}^{h^{(p q)}}$ (resp. $\left.d_{j}^{v^{(p q)}}, s_{j}^{v^{(p q)}}\right)$ satisfy the usual simplicial identities.

Now suppose that $\alpha:\left(\alpha_{1}, \alpha_{2}\right)$ is a morphism from $\eta_{1}: R_{1} \rightarrow S_{1}$ to $\eta_{2}: R_{2} \rightarrow S_{2}$ in the category of crossed modules of k-algebras. Using the usual bar construction, we can form the simplicial algebras $S_{1} / / R_{1}$ and $S_{2} / / R_{2}$ from η_{1} and η_{2} respectively as above. Analogously to [9], we obtain a simplicial algebra morphism

$$
\Phi: S_{1} / / R_{1} \rightarrow S_{2} / / R_{2}
$$

and we can define this map on each step by

$$
\Phi_{n}:\left(S_{1} \ltimes\left(R_{1}\right)^{\ltimes^{n}}\right) \rightarrow\left(S_{2} \ltimes\left(R_{2}\right)^{\propto^{n}}\right)
$$

with

$$
\Phi_{n}:\left(s_{1}, r_{1}, r_{2}, \ldots, r_{n}\right)=\left(\alpha_{2}\left(s_{1}\right), \alpha_{1}\left(r_{1}\right), \alpha_{1}\left(r_{2}\right), \ldots, \alpha_{1}\left(r_{n}\right)\right)
$$

for all $s_{1} \in S_{1}$ and $r_{i} \in R_{1}$ and where the maps Φ_{n} are homomorphisms of algebras.
An action of the algebra $\left(S_{1} \ltimes\left(R_{1}\right)^{\propto^{n}}\right)$ on the underlying k-module of the algebra $\left(S_{2} \ltimes\left(R_{2}\right)^{\ltimes^{n}}\right)$ can be given by this map, namely,

$$
\left(s_{1}, \ltimes_{i=1}^{n}\left(r_{i}\right)\right):\left(s_{2}, \ltimes_{i=1}^{n}\left(r_{i}^{\prime}\right)\right)=\left(s_{2}+\alpha_{1}\left(s_{1}\right), \ltimes_{i=1}^{n}\left(r_{i}^{\prime}+\alpha_{1}\left(r_{i}\right)\right)\right)
$$

where $s_{1} \in S_{1}, s_{2} \in S_{1}$ and $r_{i} \in R_{1}, r_{i}^{\prime} \in R_{2}$ for $i=1,2, \ldots, n$.
Using this action on each step, and considering the usual bar construction, we can form a bisimplicial k-module,

$$
\mathfrak{B a r}^{(2)}:\left(S_{2} / / R_{2}\right) / /\left(S_{1} / / R_{1}\right)
$$

and, on each directions, this can be defined by the k-modules

$$
\mathfrak{B a r} \mathfrak{r}_{n, m}^{(2)}:=\left(S_{2} \ltimes\left(R_{2}\right)^{\ltimes^{n}}\right) \times\left(S_{1} \ltimes\left(R_{1}\right)^{\ltimes^{n}}\right)^{\times^{m}} .
$$

The horizontal homomorphisms between these k-modules can be defined as follows:

1. For all

$$
\left(s_{2}, r_{21}, \cdots, r_{2 n}\right) \in S_{2} \ltimes\left(R_{2}\right)^{\ltimes^{n}}
$$

and

$$
\left(\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \in\left(S_{1} \ltimes\left(R_{1}\right)^{\ltimes^{n}}\right)^{\times^{m}}
$$

where, for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m, r_{1 i}^{j} \in R_{1}, r_{2 i} \in R_{2}, s_{2} \in S_{2}, s_{1}^{j} \in S_{1}$, the $d_{0}^{h}: \mathfrak{B a r}_{n, m}^{(2)} \rightarrow \mathfrak{B a r}_{n, m-1}^{(2)}$ is defined by

$$
\begin{aligned}
& d_{0}^{h}\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
= & \left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right)+\Phi_{n}\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right),\left(s_{1}^{2}, r_{11}^{2}, \cdots, r_{1 n}^{2}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right)
\end{aligned}
$$

2. For $0<i<m$, the $d_{i}^{h}: \mathfrak{B a r}_{n, m}^{(2)} \rightarrow \mathfrak{B a r}_{n, m-1}^{(2)}$ is defined by

$$
\begin{aligned}
d_{i}^{h}\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\right. & \left.\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
& =\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\right. \\
& \left.\left(s_{1}^{i}, r_{11}^{i}, \cdots, r_{1 n}^{i}\right)+\left(s_{1}^{i+1}, r_{11}^{i+1}, \cdots, r_{1 n}^{i+1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right)
\end{aligned}
$$

3. $d_{m}^{h}: \mathfrak{B a r}{ }_{n, m}^{(2)} \rightarrow \mathfrak{B a r}_{n, m-1}^{(2)}$ is defined by

$$
\begin{aligned}
d_{m}^{h}\left(\left(s_{2}, r_{21}, \cdots,\right.\right. & \left.\left.r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
& =\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m-1}, r_{11}^{m-1}, \cdots, r_{1 n}^{m-1}\right)\right) .
\end{aligned}
$$

4. For all $0 \leqslant i \leqslant m$, the $s_{i}^{h}: \mathfrak{B a r}_{n, m}^{(2)} \rightarrow \mathfrak{B a r}_{n, m+1}^{(2)}$ is defined by

$$
\begin{aligned}
& s_{i}^{h}\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
& \quad=\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\right. \\
& \\
& \left.\quad\left(s_{1}^{i}, r_{11}^{i}, \cdots, r_{1 n}^{i}\right),(0,0, \cdots, 0),\left(s_{1}^{i+1}, r_{11}^{i+1}, \cdots, r_{1 n}^{i+1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) .
\end{aligned}
$$

Similarly, the vertical homomorphisms can be defined as follows:

1. the $d_{0}^{v}: \mathfrak{B a r}{ }_{n, m}^{(2)} \rightarrow \mathfrak{B a r}{ }_{n-1, m}^{(2)}$ is defined by

$$
\begin{aligned}
& d_{0}^{v}\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
= & \left(\left(s_{2}+\eta_{2}\left(r_{21}\right), r_{22} \cdots, r_{2 n}\right),\left(s_{1}^{1}+\eta_{1}\left(r_{11}^{1}\right), r_{12}^{2} \cdots, r_{1 n}^{2}\right), \cdots,\left(s_{1}^{m}+\eta_{1}\left(r_{11}^{m}\right), r_{12}^{m} \cdots, r_{1 n}^{m}\right)\right) .
\end{aligned}
$$

2. For $0<i<n$, the $d_{i}^{v}: \mathfrak{B a r}_{n, m}^{(2)} \rightarrow \mathfrak{B a r}_{n-1, m}^{(2)}$ is defined by

$$
\begin{aligned}
& d_{i}^{v}\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
& \quad=\left(\left(s_{2}, r_{21}, \cdots, r_{2 i}+r_{2(i+1)}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 i}^{1}+r_{1(i+1)}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\right. \\
& \left.\quad\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 i}^{m}+r_{1(i+1)}^{m} \cdots, r_{1 n}^{m}\right)\right) .
\end{aligned}
$$

3. $d_{n}^{v}: \mathfrak{B a r}_{n, m}^{(2)} \rightarrow \mathfrak{B a r}_{n-1, m}^{(2)}$ is defined by

$$
\begin{aligned}
& d_{n}^{v}\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
& \quad=\left(\left(s_{2}, r_{21}, \cdots, r_{(2 n-1)}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1(n-1)}^{1}\right), \cdots,\left(s_{1}^{m-1}, r_{11}^{m}, \cdots, r_{1(n-1)}^{m}\right)\right)
\end{aligned}
$$

4.For all $0 \leqslant i \leqslant n$, the $s_{i}^{v}: \mathfrak{B a r}_{n, m}^{(2)} \rightarrow \mathfrak{B a r}_{n+1, m}^{(2)}$ is defined by

$$
\begin{aligned}
& s_{i}^{v}\left(\left(s_{2}, r_{21}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 n}^{m}\right)\right) \\
& \quad=\left(\left(s_{2}, r_{21}, \cdots, r_{2 i}, 0, r_{2(i+1)}, \cdots, r_{2 n}\right),\left(s_{1}^{1}, r_{11}^{1}, \cdots, r_{1 i}^{1}, 0, r_{1(i+1)}^{1}, \cdots, r_{1 n}^{1}\right), \cdots,\right. \\
& \quad \\
& \left.\quad\left(s_{1}^{m}, r_{11}^{m}, \cdots, r_{1 i}^{m}, 0, r_{1(i+1)}^{m}, \cdots r_{1 n}^{m}\right)\right) .
\end{aligned}
$$

In low dimensions, we can illustrate this bisimplicial k-module by the diagram:

For instance, in this diagram, the homomorphisms in the first square are given by:

$$
\begin{array}{cl}
d_{0}^{v}\left(s_{2}, r_{2}\right)=s_{2}+\eta_{2}\left(r_{2}\right), & d_{0}^{h}\left(s_{2}, s_{1}\right)=s_{2}+\alpha_{2}\left(s_{1}\right) \\
d_{1}^{v}\left(s_{2}, r_{2}\right)=s_{2}, & d_{1}^{h}\left(s_{2}, s_{1}\right)=s_{2} \\
s_{0}^{v}\left(s_{2}\right)=\left(s_{2}, 0\right), & s_{0}^{h}\left(s_{2}\right)=\left(s_{2}, 0\right) .
\end{array}
$$

and

$$
\begin{array}{cc}
d_{0}^{v}\left(\left(s_{2}, r_{2}\right),\left(s_{1}, r_{1}\right)\right)=\left(s_{2}+\eta_{2}\left(r_{2}\right), s_{1}+\eta_{1}\left(r_{1}\right)\right), & d_{0}^{h}\left(\left(s_{2}, r_{2}\right),\left(s_{1}, r_{1}\right)\right)=\left(s_{2}+\alpha_{2}\left(s_{1}\right), r_{2}+\alpha_{1}\left(r_{1}\right)\right) \\
d_{1}^{v}\left(\left(s_{2}, r_{2}\right),\left(s_{1}, r_{1}\right)\right)=\left(s_{2}, s_{1}\right), & d_{1}^{h}\left(\left(s_{2}, r_{2}\right),\left(s_{1}, r_{1}\right)\right)=\left(s_{2}, r_{2}\right) \\
s_{0}^{v}\left(s_{2}, s_{1}\right)=\left(\left(s_{2}, 0\right),\left(s_{1}, 0\right)\right), & s_{0}^{h}\left(s_{2}, r_{2}\right)=\left(\left(s_{2}, r_{2}\right),(0,0)\right) .
\end{array}
$$

Therefore, we obtained a bisimplicial k-module, from the morphism α in the category of crossed modules of k-algebras. Thus we expect to give the following result.

Theorem 7.1. Given a morphism $\alpha: \eta_{1} \rightarrow \eta_{2}$ in the category of crossed modules of k-algebras, a crossed ideal map structure on the morphism α gives an ideal bisimplicial algebra structure on the associated bisimplicial k-module $\mathfrak{B a r}{ }^{(2)}:\left(S_{2} / / R_{2}\right) / /\left(S_{1} / / R_{1}\right)$, and conversely, any ideal bisimplicial algebra structure on the bisimplicial k-module $\mathfrak{B a r}{ }^{(2)}$: $\left(S_{2} / / R_{2}\right) / /\left(S_{1} / / R_{1}\right)$ determines a crossed ideal map structure on the morphism $\alpha: \eta_{1} \rightarrow$ η_{2}.

Remark 7.2. In order to prove this theorem, we would need to introduce the notion of 'ideal bisimplicial algebra structure' over the associated bisimplicial k-module $\mathfrak{B a r}{ }^{(2)}$ explicitly. The proof will be analysed in a separate paper. Of course, this result can be iterated to the crossed n-cube structure defined by Ellis in [6]. In this case, we would need to give a detailed definition of a crossed n-ideal of a crossed n-cube and a crossed n-ideal structure over the morphism between crossed $(n-1)$ cubes. Then it would give a multi-simplicial algebra in dimension n, or an n-simplicial algebra together with this structure.

Acknowledgment. We would like to thank the referees very much for their detailed and valuable comments improving the paper.

References

[1] M. André, Homologie des algèbres commutatives, Die Grundlehren der Mathematischen Wissenchaften, 206 Springer-Verlag 1974.
[2] Z. Arvasi and T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ., 3, No. 1, pp 1-23, 1997.
[3] Z. Arvasi and T. Porter, Freeness conditions for 2-crossed module of commutative algebras, Appl. Categ. Structures, 6, 455-471, 1998.
[4] Z. Arvasi and A. Odabaş, Computing 2-dimensional algebras: Crossed modules and Cat1-algebras, J. Algebra Appl. 15 (10), 1650185, 2016.
[5] T. Datuashvili and T. Pirashvili, On Co Homology of 2-Types and Crossed Modules, J. Algebra 244, 352-365, 2001.
[6] G. Ellis, Higher dimensional crossed modules of algebras, J. Pure Appl. Algebra 52, 277-282, 1988.
[7] G. Ellis, Crossed squares and combinatorial homotopy, Math. Z. 214, 93-110, 1993.
[8] E.D. Farjoun and K. Hess, Normal and co-normal maps in homotopy theory, Homology Homotopy Appl. 14, 1, 79-112, 2012.
[9] E.D. Farjoun and Y. Segev, Crossed modules as homotopy normal maps, Topology Appl. 157, 359-368, 2010.
[10] E.D. Farjoun and Y. Segev, Normal closure and injective normalizer of a group homomorphism, J. Algebra 423, 1010-1043, 2015.
[11] D. Guin-Waléry and J-L. Loday, Obsructioná l'excision en K-theories algébrique, In: Friedlander, E.M.,Stein, M.R.(eds.) Evanston conf. on algebraic K-Theory 1980, (Lecture Notes in Math., 854, 179-216), Springer, Berlin Heidelberg, 1981.
[12] L. Illusie, Complex cotangent et deformations I, II, Lecture Notes in Math. 239 1971, II: 283, Springer, 1972.
[13] T. Porter, Homology of commutative algebras and an invariant of Simis and Vasconceles, J. Algebra 99, 458-465, 1986.
[14] M. Prezma, Homotopy normal maps, Algebr. Geom. Topol. 12, 1211-1238, 2012.
[15] N.M. Shammu, Algebraic and categorical structure of category of crossed modules of algebras, University of Wales, PhD Thesis, 1992.
[16] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55, 453-496, 1949.

[^0]: *Corresponding Author.
 Email addresses: aodabas@ogu.edu.tr (A. Odabaş), erdal.ulualan@dpu.edu.tr (E. Ulualan)
 Received: 10.06.2019; Accepted: 11.02.2020

