## Occupational Health Assessment of Permanent University Employees in Terms of Clinical Biochemical Data

Klinik Biyokimya Verileri Açısından Bir Üniversitede Çalışan Daimi İşçilerin İş Sağlığı Değerlendirilmesi Hasan Basri SAVAS<sup>1</sup>

#### **ABSTRACT**

Aim: Occupational health and safety involves important measures, trainings, and health screenings as defined by law. The existing literature on occupational medicine practices and related clinical laboratory data has considerable room for expansion. The aim of this study is to contribute to the evaluation of workplace medicine practices with original laboratory data.

Material and Method: The clinical laboratory data of the workers from the Alanya Alaaddin Keykubat University, Turkey, were analyzed retrospectively. Biochemical test results of a total of 104 permanent worker, 43 women and 61 men, were compared. Statistical analysis results were evaluated and p<0.05 was accepted as the limit of significance.

**Results:** In the statistical analysis based on sex, AST (Aspartate Aminotransferase), ALT (Alanine aminotransferase), RBC (Red blood cell), HGB (Hemoglobin), HCT (Hematocrit), MCH (Mean Corpuscular Hemoglobin; Average Cell Hemoglobin), MCV (mean erythrocyte volume), MCHC (Average Cell Hemoglobin Concentration), MONO (Monocyte) and MONO% values are higher in male workers, whereas PLT (platelet), PCT (Percent ratio of platelet cells to other cells), RDW-CV (Erythrocyte distribution width-coefficient variation-coefficient of variation) and RDW-SD (Erythrocyte distribution width-standard deviation) values are higher in female workers (p<0.05).

**Discussion:** In this study, the young age of the participating workers prevented laboratory results to go off the reference range. Values that differ between female and male gender groups are in line with expected differences based on gender. Including the fasting blood glucose values in routine clinical laboratory tests requested within the scope of workplace medicine may be useful in the early diagnosis and prevention of increasingly frequent insulin resistance, obesity, and type 2 diabetes mellitus.

**Keywords:** Clinical Laboratory, Biochemistry, Workplace Medicine, Occupational Health

#### ÖZ

Amaç: İş sağlığı ve güvenliği yasalarla belirlenmiş önemli tedbirler, eğitimler ve sağlık taramaları içermektedir. Literatürde iş sağlığı ile ilgili yapılan işyeri hekimliği uygulamaları ve ilgili klinik laboratuvar verileri ile ilgili eksiklik bulunmaktadır. Bu çalışmada özgün laboratuvar verileri ile işyeri hekimliği uygulamalarının değerlendirilmesi amaçlandı.

Materyal-Metot: Alanya Alaaddin Keykubat Üniversitesi çalışanlarının klinik laboratuvar verileri geriye dönük olarak incelendi. 43'ü kadın 61'i erkek toplam 104 daimi işçinin biyokimyasal test sonuçları karşılaştırıldı. İstatistiksel analiz sonuçları değerlendirildi ve p<0,05 anlamlılık sınırı olarak kabul edildi.

Bulgular: Cinsiyete dayalı istatistiksel analizde, AST (Aspartat Aminotransferaz), ALT (Alanin aminotransferaz), RBC (Kırmızı kan hücresi), HGB (Hemoglobin), HCT (Hematokrit), MCH (Ortalama Korpuskuler Hemoglobin; Ortalama Hücre Hemoglobini), MCV (ortalama eritrosit hacmi), **MCHC** (Ortalama Hücre Hemoglobin Konsantrasyonu), MONO (Monosit) ve % MONO değerleri erkek çalışanlarda daha yüksekken, PLT (trombosit), PCT (Trombosit hücrelerinin diğer hücrelere yüzde oranı), RDW-CV (Eritrosit dağılımı genislik-katsayı değisim katsayısı) ve RDW-SD (Eritrosit dağılım genişliği-standart sapma) değerleri kadın çalışanlarda daha yüksektir (p<0,05).

Tartışma: Bu araştırmada işçilerin genç olması belirgin şekilde referans aralıkların dışına çıkmış laboratuvar sonuçlarının oluşmasını önlemiştir. Kadın ve erkek cinsiyet grupları arasında farklılık çıkan değerler, cinsiyete göre farklı olması beklenen değerlerdir. İşyeri hekimliği kapsamında klinik laboratuvar istemleri arasına rutinde açlık kan glikoz değerlerinin de dahil edilmesi giderek sıklığı artan insülin direnci, obezite ve tip 2 diyabetes mellitus'un erken tanı ve önlenmesinde faydalı olabilir.

**Anahtar Kelimeler:** Klinik Laboratuvar, Biyokimya, İşyeri Hekimliği, İş Sağlığı

The study was conducted with the permission granted by the Alanya Alaaddin Keykubat University Clinical Research Ethics Committee under the resolution no. 10354421-2019/10/9, dated 26.09.2019.

<sup>1</sup>Assist. Prof. Dr. Hasan Basri SAVAS, M.D. Ph.D., Alanya Keykubat University, Faculty of Medicine, Department of Medical Biochemistry, hasan.savas@alanya.edu.tr, ORCID: orcid.org/0000-0001-8759-4507

 İletişim / Corresponding Author:
 Hasan Basri SAVAS
 Geliş Tarihi / Received:
 17.03.2020

 e-posta/e-mail:
 hasan.savas@alanya.edu.tr
 Kabul Tarihi/Accepted:
 16.01.2021

## INTRODUCTION

Every year approximately 300 million occupational accidents take place, about 10 million employees are diagnosed with occupational diseases, and more than 3 million employees die for reasons related to working conditions worldwide. This is a picture with grave health problems and loss. Several economic international associations and platforms as the International Labor Organization (ILO) work to ensure occupational health and safety. These efforts essentially comprise studies to identify related risks and to take effective measures in order to prevent illness and accidents. Medical practices undertaken for purpose include standard medical examination before employment, assigning tasks compatible with the health status of the employees, vaccination and follow-up to ensure effectiveness. assessment ofworkplace environment factors, checking the risk factors in the workplace, providing healthcare in the workplace, health education and consultancy, regular examination and screenings. The purpose of periodic checks is both the early diagnosis of any disease in subjects with a healthy appearance and regular evaluation for specific purposes in accordance with the type of work and environmental factors in the workplace. onboarding examinations Standard regular clinical examinations and screenings include requests of clinical laboratory tests. The evaluation of these clinical laboratory data is very important both in terms of evidence-based medicine and the documentation of the current situation.<sup>2</sup>

Workers in our study are classified as less dangerous because they work university. The nature of work in the Republic of Turkey following the initial examinations according to the current legislation, the personal characteristics of the worker, workplace hazard class and business qualities primarily made in the workplace with international standards, taking into account the risk assessment results in line; Periodic inspection is repeated at least every five years for jobs in less hazardous class.<sup>3</sup> For this reason, since the biochemical examinations will take a long period of five years, the parameters should be determined and evaluated very well.

Therefore, clinical laboratory data are a routine element in workplace medicine and contain valuable information. The existing literature on occupational medicine practices and related clinical laboratory data has considerable room for expansion.

The aim of this study is to contribute to the evaluation of workplace medicine practices with original laboratory data. Thus, the biochemistry data of occupational health screenings, which could not find enough place in the literature until today, will be discussed in an original way.

#### **MATERIAL-METHODS**

**Ethical permission:** The study was conducted with the permission granted by the Alanya Alaaddin Keykubat University Clinical Research Ethics Committee under the resolution no. 10354421-2019/10/9, dated 26.09.2019.

Scope of the study: Workplace medical records of 104 people employed by the Alanya Alaaddin Keykubat University, Turkey were comparatively evaluated according to gender. These employees comprised of 43 women and 61 men between the ages 22-49. The relevant clinical laboratory data of the employees obtained

during the occupational health screenings were analyzed retrospectively.

Statistical analysis: Kolmogorov-Smirnov test was performed for Test of Normality. Kolmogorov Smirnov test is perhaps the most known and used of the hypothesis tests that test the assumption of normality. If the z value shown as a result of the analysis and the significance level (asymp. sig.) Associated with it are significant at the p<.05 level, the hypothesis is rejected, and the distribution is decided to be not normal. If the value of p>.05 is obtained, the hypothesis is accepted, and it is

interpreted that the distribution does not show a significant difference from the normal distribution. It was evaluated that the laboratory parameters were distributed normally (p>0.05). Biochemical parameters were compared between groups according to gender with the parametric Independent Samples T Test. Firstly, homogeneity was evaluated with Levene's Test for Equality of Variances. Then the Independent Samples

Test sig. (2-tailed) value was checked in accordance with the homogeneity condition.<sup>4</sup> ROC (Receiver Operating Characteristic) curves were drawn for all biochemical parameters. The areas under the Roc curve were determined. Statistical significance was accepted as p <0.05. The size of the area under the ROC curve indicates how significant the result is.

#### RESULT AND DISCUSSION

The mean age and standard deviation of female and male groups were respectively  $34.86 \pm 6.15$  and  $33.23 \pm 5.80$  (mean  $\pm$  standard deviation). No significant difference was found between mean age values.

Kolmogorov-Smirnov test was performed for Test of Normality. It was evaluated that the laboratory parameters were distributed normally by Kolmogorov-Smirnov test (p>0.05). Then, statistical analysis was performed to compare the groups determined by gender. Descriptive statistics results were given in figure 1 below.

the statistical analysis comparative evaluation of female (n=43) and male (n=61) employees, AST (Aspartate (Alanine Aminotransferase), **ALT** aminotransferase), RBC (Red blood cell, Red blood cell count), HGB (Hemoglobin), HCT (Hematocrit), MCH (Mean Corpuscular Hemoglobin; Average Cell Hemoglobin), MCV (mean erythrocyte volume), MCHC (Average Cell Hemoglobin Concentration), MONO (Monocyte) and MONO% values are higher in male workers, whereas PLT (platelet), PCT (Percent ratio of platelet cells to other cells), RDW-CV (Erythrocyte distribution width-coefficient variationcoefficient of variation) and **RDW-SD** (Erythrocyte distribution width-standard deviation) values are higher in female workers (p<0.05). Biochemical parameters were compared between groups according to gender with the parametric Independent Samples T Test. Firstly, homogeneity was evaluated with Levene's Test for Equality of Variances. Then the Independent Samples Test results were given in figure 2 below. The Roc curves of all biochemical and CBC parameters were drawn and given in figure 3 below. The area information under the Roc curve is given in figure 4 below.

|              |                | Group Sta | tistics            |                    |                   |
|--------------|----------------|-----------|--------------------|--------------------|-------------------|
|              |                |           |                    | Std.               | Std. Error        |
| Sex          |                | N         | Mean               | Deviation          | Mean              |
| Urea         | Female         | 43        | 19,7674            | 5,96353            | ,90943            |
|              | Male           | 61        | 27,3934            | 6,53778            | ,83708            |
| Creatinine   | Female         | 43        | ,7209              | ,07348             | ,01121            |
|              | Male           | 61        | ,8689              | ,10020             | ,01283            |
| AST          | Female         | 43<br>61  | 16,3023<br>19,0984 | 4,87235<br>5,70294 | ,74303<br>,73019  |
| ALT          | Male<br>Female | 43        | 17,8837            | 9.90000            | 1,50974           |
| ALI          | Male           | 61        | 24,3279            | 11,63575           | 1,48981           |
| Hgfh         | Female         | 43        | 107,9302           | 9,42741            | 1,43767           |
|              | Male           | 61        | 110,7377           | 9,52173            | 1,21913           |
| WBC          | Female         | 43        | 7,4500             | 1,74833            | ,26662            |
|              | Male           | 61        | 7,5072             | 1,82472            | ,23363            |
| RBC          | Female         | 43        | 4,6977             | ,53330             | ,08133            |
|              | Male           | 61        | 5,1946             | ,48475             | ,06207            |
| HGB          | Female         | 43<br>61  | 12,5070            | 1,34755            | ,20550            |
| нст          | Male<br>Female | 43        | 15,0426<br>37,3070 | 1,29105<br>3,46653 | ,16530<br>,52864  |
| HC I         | Male           | 61        | 43,5869            | 3,46653            | ,41805            |
| PLT          | Female         | 43        | 284.5581           | 54.09617           | 8.24959           |
|              | Male           | 61        | 242,5246           | 42,74678           | 5,47316           |
| MCH          | Female         | 43        | 27,3535            | 3,13045            | ,47739            |
|              | Male           | 61        | 29,1080            | 2,38896            | ,30588            |
| MCV          | Female         | 43        | 81,1163            | 6,62351            | 1,01008           |
|              | Male           | 61        | 83,6705            | 5,64967            | ,72337            |
| MCHC         | Female         | 43        | 33,3488            | 1,43749            | ,21921            |
| 207          | Male           | 61<br>43  | 34,6049            | 1,00090            | ,12815            |
| PCT          | Female         | 61        | ,2991<br>,2467     | ,05735<br>,03893   | ,00875<br>,00498  |
| MPV          | Male<br>Female | 43        | 10.3814            | ,86196             | ,13145            |
| IVIEV        | Male           | 61        | 10,2574            | ,76343             | ,09775            |
| PDW          | Female         | 43        | 11,8744            | 2.01259            | ,30692            |
|              | Male           | 61        | 11,7328            | 1,72913            | ,22139            |
| EOSPercent   | Female         | 43        | 2,3005             | 1,84829            | ,28186            |
|              | Male           | 61        | 2,4070             | 1,19861            | ,15347            |
| LYMP         | Female         | 43        | 2,1907             | ,61881             | ,09437            |
|              | Male           | 61        | 2,4385             | ,65448             | ,08380            |
| LYMPPercent  | Female<br>Male | 43<br>61  | 31,5930<br>33,3967 | 9,60368<br>6,12133 | 1,46455<br>,78376 |
| MONOPercent  | Female         | 43        | 7.2860             | 1.67894            | ,25604            |
| WONOFEICER   | Male           | 61        | 8,2213             | 1,92303            | ,24622            |
| BASOPercent  | Female         | 43        | ,4953              | ,16612             | ,02533            |
|              | Male           | 61        | ,5361              | ,20578             | ,02635            |
| NEUPercent   | Female         | 43        | 58,9698            | 9,18307            | 1,40041           |
|              | Male           | 61        | 55,6426            | 7,08537            | ,90719            |
| NEU          | Female         | 43        | 4,3207             | 1,55870            | ,23770            |
| FOS          | Male           | 61<br>43  | 4,1946             | 1,28872            | ,16500            |
| EOS          | Female         | 43<br>61  | ,1665<br>,1825     | ,14149<br>,10612   | ,02158<br>,01359  |
| BASO         | Male<br>Female | 43        | ,1825              | .01489             | .00227            |
| BASO         | Male           | 61        | ,0395              | ,01586             | ,00203            |
| MONO<br>PLCR | Female         | 43        | ,5233              | ,14257             | ,02174            |
|              | Male           | 61        | ,6079              | ,18926             | ,02423            |
|              | Female         | 43        | 27,4977            | 7,47684            | 1,14021           |
| RDWCV        | Male           | 61        | 26,7016            | 7,03370            | ,90057            |
|              | Female         | 43        | 13,6233            | 1,71365            | ,26133            |
|              | Male           | 61        | 12,6852            | 1,12277            | ,14376            |
| RDWSD        | Female         | 43        | 39,9326            | 3,64422            | ,55574            |
| IG           | Male<br>Female | 61<br>43  | 38,3705<br>,0202   | 2,39787<br>.01058  | ,30702<br>.00161  |
| IG           | Male           | 61        | ,0202              | ,01058             | ,00161            |
| IGPercent    | Female         | 43        | ,2698              | ,12447             | ,00192            |
| ioi cident   | Male           | 61        | ,3295              | ,19352             | ,02478            |
|              |                |           | , ,                | ,                  | ,                 |

Figure 1. Descriptive Statistics of Clinical Biochemistry Laboratory Data for the Workers

Figure 1 Explanation: AST (Aspartate Aminotransferase), **ALT** (Alanine aminotransferase) eGFR (Estimated glomerular filtration rate), WBC (White blood cell; leukocyte count), RBC (Red blood cell, Red blood cell count), HGB (Hemoglobin), HCT (Hematocrit), PLT (Platelet), **MCH** (Mean Corpuscular Hemoglobin; Average Cell Hemoglobin), MCV (mean erythrocyte volume), MCHC (Average Cell Hemoglobin Concentration), PCT (Percent ratio of platelet cells to other cells), MPV (Average platelet volume), PDW

Width), (Platelet Distribution EOS (Eosinophil), LYM (Lymphocyte), MONO (Monocyte), BASO (Basophil), P-LCR ratio), (Large platelet cell **RDW-CV** (Erythrocyte distribution width-coefficient variation-coefficient of variation), RDW-SD distribution (Erythrocyte width-standard (Immature Granulocyte). deviation), IG Percent: Percentage (%). Clinical laboratory parameters were evaluated according to gender, mean, standard deviation and standard error values.

|             | 1                                                      |                              | depende | nt samp                      | es rest       |         |                      |                    |                      |                    |
|-------------|--------------------------------------------------------|------------------------------|---------|------------------------------|---------------|---------|----------------------|--------------------|----------------------|--------------------|
|             |                                                        | Levene<br>for Fau            |         |                              |               |         |                      |                    |                      |                    |
| Parameters  |                                                        | for Equality of<br>Variances |         | t-test for Equality of Means |               |         |                      |                    |                      |                    |
|             |                                                        |                              |         | Sig. (2-                     |               |         | Mean                 | Std. Frror         | Interva              | l of the           |
|             |                                                        | F                            | Sig.    | t                            | df            | tailed) | Difference           | Difference         | Lower                | Upper              |
| Urea        | Equal variances assumed                                | 1,464                        | ,229    | -6,072                       | 102           | ,000    | -7,62600             | 1,25599            | -10,11725            | -5,13475           |
|             | Equal variances not assumed                            |                              |         | -6,170                       | 95,386        | ,000    | -7,62600             | 1,23603            | -10,07969            | -5,17231           |
| Creatinine  | Equal variances assumed                                | 5,911                        | ,017    | -8,239                       | 102           | ,000    | -,14792              | ,01795             | -,18353              | -,11231            |
|             | Equal variances not assumed                            |                              |         | -8,684                       | 101,815       | ,000    | -,14792              | ,01703             | -,18171              | -,11413            |
| AST         | Equal variances assumed                                | 1,638                        | ,203    | -2,612                       | 102           | ,010    | -2,79604             | 1,07057            | -4,91951             | -,67256            |
|             | Equal variances not assumed                            |                              |         | -2,684                       | 98,190        | ,009    | -2,79604             | 1,04176            | -4,86332             | -,72875            |
| ALT         | Equal variances assumed                                | 4,213                        | ,043    | -2,954                       | 102           | ,004    | -6,44415             | 2,18125            | -10,77065            | -2,11765           |
|             | Equal variances not assumed                            |                              |         | -3,038                       | 98,345        | ,003    | -6,44415             | 2,12104            | -10,65310            | -2,23519           |
| Hgfh        | Equal variances assumed                                | ,299                         | ,586    | -1,487                       | 102           | ,140    | -2,80747             | 1,88827            | -6,55284             | ,93790             |
|             | Equal variances not assumed                            |                              |         | -1,489                       | 91,134        | ,140    | -2,80747             | 1,88498            | -6,55169             | ,93674             |
| WBC         | Equal variances assumed                                | ,481                         | ,489    | -,160                        | 102           | ,873    | -,05721              | ,35716             | -,76563              | ,65120             |
|             | Equal variances not assumed                            |                              |         | -,161                        | 92,915        | ,872    | -,05721              | ,35450             | -,76118              | ,64676             |
| RBC         | Equal variances assumed                                | ,405                         | ,526    | -4,939                       | 102           | ,000    | -,49692              | ,10062             | -,69649              | -,29734            |
|             | Equal variances not assumed                            |                              |         | -4,857                       | 84,989        | ,000    | -,49692              | ,10231             | -,70033              | -,29350            |
| HGB         | Equal variances assumed                                | ,507                         | ,478    | -9,687                       | 102           | ,000    | -2,53565             | ,26177             | -3,05486             | -2,01643           |
|             | Equal variances not assumed                            |                              |         | -9,614                       | 88,113        | ,000    | -2,53565             | ,26373             | -3,05975             | -2,01154           |
| HCT         | Equal variances assumed                                | ,414                         | ,521    | -9,416                       | 102           | ,000    | -6,27991             | ,66695             | -7,60280             | -4,95701           |
| DI T        | Equal variances not assumed                            |                              |         | -9,318                       | 87,109        | ,000    | -6,27991             | ,67396             | -7,61946             | -4,94036           |
| PLT         | Equal variances assumed                                | 4,622                        | ,034    | 4,421                        | 102           | ,000    | 42,03355             | 9,50762            | 23,17523             | 60,89186           |
| мсн         | Equal variances not assumed<br>Equal variances assumed |                              |         | 4,246                        | 76,708<br>102 | ,000    | 42,03355             | 9,90006            | 22,31881             | 61,74829           |
| MCH         | Equal variances assumed  Equal variances not assumed   | 3,353                        | ,070    | -3,241                       |               | ,002    | -1,75454             | ,54139             | -2,82838             | -,68071            |
| MCV         | Equal variances not assumed                            |                              |         | -3,095                       | 74,745        | ,003    | -1,75454             | ,56697             | -2,88408             | -,62501            |
| INIC V      | Equal variances assumed                                | 1,066                        | ,304    | -2,113<br>-2,056             | 102<br>81,181 | ,037    | -2,55421<br>-2,55421 | 1,20859<br>1,24238 | -4,95144<br>-5,02608 | -,15698<br>-,08235 |
| мснс        | Equal variances assumed                                | 9.373                        | .003    | -2,056                       | 81,181        | .000    | -2,55421             | .23896             | -1,73005             | -,0823             |
| 1           | Equal variances assumed                                | 9,373                        | ,003    | -5,256<br>-4,947             | 69.898        | .000    | -1,25608<br>-1,25608 | ,23896             | -1,76253             | -,78211            |
| PCT         | Equal variances assumed                                | 9,244                        | .003    | 5,547                        | 102           | .000    | .05235               | .00944             | .03363               | .07107             |
|             | Equal variances not assumed                            | 3,244                        | ,003    | 5,200                        | 68,645        | .000    | .05235               | .01007             | .03226               | .07243             |
| MPV         | Equal variances assumed                                | .911                         | ,342    | ,773                         | 102           | ,441    | ,12402               | ,16038             | -,19410              | ,44214             |
|             | Equal variances not assumed                            | ,311                         | ,542    | ,757                         | 83,433        | ,451    | ,12402               | ,16381             | -,20176              | ,44980             |
| PDW         | Equal variances assumed                                | .862                         | .355    | .384                         | 102           | .702    | ,14163               | .36860             | -,58948              | ,87274             |
|             | Equal variances not assumed                            | ,002                         | ,000    | ,374                         | 81.612        | .709    | .14163               | .37843             | -,61125              | .89451             |
| EOSPercent  | Equal variances assumed                                | 1,017                        | ,316    | -,357                        | 102           | ,722    | -,10658              | ,29880             | -,69925              | ,48608             |
|             | Equal variances not assumed                            | 1,017                        | ,510    | -,332                        | 66,502        | .741    | -,10658              | .32093             | -,74726              | ,53409             |
| LYMP        | Equal variances assumed                                | .109                         | ,742    | -1,945                       | 102           | .055    | -,24783              | .12744             | -,50061              | .00496             |
|             | Equal variances not assumed                            | ,                            |         | -1,964                       | 93,609        | ,053    | -,24783              | ,12620             | -,49842              | ,00276             |
| LYMPPercent | Equal variances assumed                                | 7,176                        | ,009    | -1,169                       | 102           | ,245    | -1,80370             | 1,54263            | -4,86350             | 1,25610            |
|             | Equal variances not assumed                            |                              |         | -1,086                       | 65,728        | ,282    | -1,80370             | 1,66108            | -5,12040             | 1,51300            |
| MONOPercent | Equal variances assumed                                | ,458                         | ,500    | -2,572                       | 102           | ,012    | -,93526              | ,36369             | -1,65664             | -,21389            |
|             | Equal variances not assumed                            |                              |         | -2,633                       | 97,332        | ,010    | -,93526              | ,35522             | -1,64024             | -,23029            |
| BASOPercent | Equal variances assumed                                | 2,457                        | ,120    | -1,074                       | 102           | ,286    | -,04072              | ,03792             | -,11594              | ,03450             |
|             | Equal variances not assumed                            |                              |         | -1,114                       | 100,054       | ,268    | -,04072              | ,03655             | -,11323              | ,03180             |
|             | Equal variances assumed                                | 3,721                        | ,057    | 2,085                        | 102           | ,040    | 3,32714              | 1,59613            | ,16122               | 6,49307            |
|             | Equal variances not assumed                            |                              |         | 1,994                        | 75,357        | ,050    | 3,32714              | 1,66857            | ,00344               | 6,65085            |
| NEU         | Equal variances assumed                                | 1,066                        | ,304    | ,450                         | 102           | ,653    | ,12611               | ,28000             | -,42927              | ,68149             |
|             | Equal variances not assumed                            |                              |         | ,436                         | 79,334        | ,664    | ,12611               | ,28936             | -,44981              | ,70202             |
| EOS         | Equal variances assumed                                | ,460                         | ,499    | -,657                        | 102           | ,513    | -,01595              | ,02428             | -,06411              | ,03221             |
|             | Equal variances not assumed                            |                              |         | -,625                        | 73,794        | ,534    | -,01595              | ,02550             | -,06676              | ,03486             |
| BA SO       | Equal variances assumed                                | ,051                         | ,822    | -,822                        | 102           | ,413    | -,00253              | ,00308             | -,00864              | ,00358             |
|             | Equal variances not assumed                            |                              |         | -,831                        | 93,971        | ,408    | -,00253              | ,00305             | -,00858              | ,00352             |
| 1           | Equal variances assumed                                | 2,713                        | ,103    | -2,477                       | 102           | ,015    | -,08461              | ,03417             | -,15238              | -,01685            |
|             | Equal variances not assumed                            |                              |         | -2,599                       | 101,509       | ,011    | -,08461              | ,03256             | -,14919              | -,02003            |
| PLCR        | Equal variances assumed                                | ,333                         | ,565    | ,554                         | 102           | ,581    | ,79604               | 1,43755            | -2,05534             | 3,64741            |
| DD141014    | Equal variances not assumed                            |                              |         | ,548                         | 87,037        | ,585    | ,79604               | 1,45296            | -2,09187             | 3,68394            |
| RDWCV       | Equal variances assumed                                | 13,207                       | ,000    | 3,373                        | 102           | ,001    | ,93801               | ,27811             | ,38638               | 1,48964            |
|             | Equal variances not assumed                            |                              |         | 3,145                        | 66,972        | ,002    | ,93801               | ,29826             | ,34268               | 1,53334            |
|             | Equal variances assumed  Equal variances not assumed   | 4,105                        | ,045    | 2,637                        | 102           | ,010    | 1,56207              | ,59238             | ,38707               | 2,7370             |
|             |                                                        |                              |         | 2,460                        | 67,169        | ,016    | 1,56207              | ,63490             | ,29485               | 2,8292             |
| IG          | Equal variances assumed                                | 3,277                        | ,073    | -1,699                       | 102           | ,092    | -,00452              | ,00266             | -,00980              | ,0007              |
| IGPercent   | Equal variances not assumed<br>Equal variances assumed |                              |         | -1,802                       | 101,999       | ,074    | -,00452              | ,00251             | -,00950              | ,00046             |
| IOPEICEIII  | Equal variances assumed  Equal variances not assumed   | 1,416                        | ,237    | -1,780                       | 102           | ,078    | -,05974              | ,03356             | -,12631              | ,00683             |
|             | Lyudi variances not assumed                            |                              |         | -1,914                       | 101,265       | ,058    | -,05974              | ,03121             | 12166                | ,00217             |

Figure 2. The Statistics of Clinical Biochemistry Laboratory Data for the Workers

Figure 2 Explanation: AST (Aspartate Aminotransferase), ALT (Alanine aminotransferase) eGFR (Estimated glomerular filtration rate), WBC (White blood cell; leukocyte count), RBC (Red blood cell, Red blood cell count), HGB (Hemoglobin), HCT (Hematocrit), PLT (Platelet). (Mean **MCH** Corpuscular Hemoglobin; Average Cell Hemoglobin), MCV (mean erythrocyte volume), MCHC (Average Cell Hemoglobin Concentration), PCT (Percent ratio of platelet cells to other cells), MPV (Average platelet volume), PDW Distribution Platelet Width), (Eosinophil), LYM (Lymphocyte), MONO (Monocyte), BASO (Basophil), P-LCR **RDW-CV** platelet cell ratio), (Large (Erythrocyte distribution width-coefficient variation-coefficient of variation), RDW-SD width-standard (Erythrocyte distribution deviation), IG (Immature Granulocyte). Percentage (%). **Biochemical** parameters were compared between groups according to gender with the parametric Independent Samples T Test. p<0.05= Statistically significant difference.

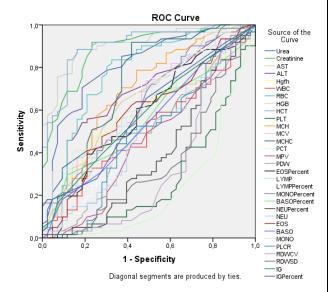



Figure 3. Roc Curve of Laboratory Parameters

| Area Under the Curve       |       |      |                      |                |                         |  |  |
|----------------------------|-------|------|----------------------|----------------|-------------------------|--|--|
|                            |       |      |                      |                | otic 95%<br>ce Interval |  |  |
| Test Result<br>Variable(s) |       |      | As ymptotic<br>Sig.b | Lower<br>Bound | Upper<br>Bound          |  |  |
| Urea                       | ,814  | ,043 | ,000                 | ,729           | ,898                    |  |  |
| Creatinine                 | ,888, | ,032 | ,000                 | ,824           | ,951                    |  |  |
| AST                        | ,660  | ,054 | ,006                 | ,553           | ,767                    |  |  |
| ALT                        | ,686  | ,053 | ,001                 | ,582           | ,790                    |  |  |
| Hgfh                       | ,599  | ,056 | ,087                 | ,489           | ,708                    |  |  |
| WBC                        | ,504  | ,057 | ,939                 | ,392           | ,617                    |  |  |
| RBC                        | ,779  | ,048 | ,000 ,6              |                | ,874                    |  |  |
| HGB                        | ,912  | ,027 | ,000                 | ,858           | ,966                    |  |  |
| HCT                        | ,906  | ,029 | ,000                 | ,849           | ,964                    |  |  |
| PLT                        | ,274  | ,051 | ,000                 | ,173           | ,375                    |  |  |
| MCH                        | ,688  | ,054 | ,001                 | ,581           | ,794                    |  |  |
| MCV                        | ,624  | ,056 | ,031                 | ,515           | ,734                    |  |  |
| MCHC                       | ,748  | ,050 | ,000                 | ,650           | ,846                    |  |  |
| PCT                        | ,226  | ,049 | ,000                 | ,131           | ,321                    |  |  |
| MPV                        | ,457  | ,059 | ,460                 | ,342           | ,573                    |  |  |
| PDW                        | ,496  | ,059 | ,945                 | ,380           | ,612                    |  |  |
| EOSPercent                 | ,584  | ,058 | ,146                 | ,471           | ,697                    |  |  |
| LYMP                       | ,611  | ,057 | ,054                 | ,501           | ,722                    |  |  |
| LYMPPercent                | ,593  | ,060 | ,107                 | ,476           | ,711                    |  |  |
| MONOPercen<br>t            | ,632  | ,055 | ,022                 | ,524           | ,741                    |  |  |
| BASOPercent                | ,555  | ,056 | ,345                 | ,444           | ,665                    |  |  |
| NEUPercent                 | ,384  | ,058 | ,045                 | ,270           | ,498                    |  |  |
| NEU                        | ,487  | ,059 | ,817                 | ,372           | ,601                    |  |  |
| EOS                        | ,589  | ,057 | ,124                 | ,477           | ,701                    |  |  |
| BASO                       | ,544  | ,057 | ,446                 | ,432           | ,656                    |  |  |
| MONO                       | ,638  | ,054 | ,017                 | ,532           | ,745                    |  |  |
| PLCR                       | ,483  | ,060 | ,769                 | ,366           | ,600                    |  |  |
| RDWCV                      | ,323  | ,058 | ,002                 | ,210           | ,436                    |  |  |
| RDWSD                      | ,350  | ,056 | ,010                 | ,240           | ,460                    |  |  |
| IG                         | ,585  | ,056 | ,142                 | ,474           | ,695                    |  |  |
| IGPercent                  | ,587  | ,057 | ,130                 | ,476           | ,699                    |  |  |

The test result variable(s): Urea, Creatinine, AST, ALT, Hgfh, WBC, RBC, HGB, HCT, PLT, MCH, MCV, MCHC, PCT, MPV, PDW, EOSPercent, LYMP, LYMPPercent, MONOPErcent, BASO, Percent, NEUPercent, NEU, EOS, BASO, MONO, PLCR, RDWCV, RDWSD, IG, ICPercent has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric as sumption b. Null hypothes is : true area = 0.5

Figure 4. Area Under Curve of Laboratory
Parameters

The reason of higher PCT (Percent ratio platelet cells to other cells) values as observed in Table 1 and 2, may be one of the reasons why PLT is significantly higher in women.5 Thus, the lower MCHC, HGB, HCT, RBC and MCV in women, it can be explained with a lower hemoglobin level compared to men.<sup>5</sup> It is an expected difference for AST and ALT by gender, considering that the AST and ALT values are higher in males and the mean values for both genders are within the reference range.6 The mean age and standard deviation of female and male groups were respectively 34.86  $\pm$ 6.15 and  $33.23 \pm 5.80$  (mean  $\pm$  standard deviation). The mean age of total workers was  $33.90 \pm 5.97$ . Thanks to the relatively young age of the participating workers, the laboratory results remained within the reference range.

Including the fasting blood glucose values in routine clinical laboratory tests requested scope of workplace medicine may be useful in the early diagnosis and prevention of increasingly frequent insulin resistance, obesity and type 2 diabetes mellitus.<sup>7</sup>

Examination in the workplace performed periodically under labor legislation provides information on the workplace conditions, as well as on organ function disorders, changes in blood cells, and blood structure in the overall employee population. The aim is early diagnosis and treatment of any disease. Periodic examinations and clinical laboratory tests on employees may help prevent the of occupational diagnoses disease approximately 10 million employees and save more than 3 million lives annually on a global scale. It is a legal obligation to carry out routine occupational health examinations of workers effectively and to evaluate the desired laboratory parameters in detail.8 Although there are many studies

occupational health and safety in the literature, biochemical parameters were not examined in these studies. 9-14 Or, specific intoxications related to occupational health were examined. 15 For this reason, the biochemical data presented in our study are unique and important in terms of guiding occupational health safety.

The narrow age range of the workers in our study is a limitation. In new studies, the effects of age range on laboratory parameters can be examined with a wider sample. However, the strength of the study is that it is one of the first studies in the literature to include biochemical data of workers' routine occupational health screenings.

Laboratory parameters to be required in routine occupational health examinations should be determined by considering the nature of the work and the hazard class. Then the biochemical results should be carefully analyzed. In this way, early diagnosis, preventive medicine and treatment will be possible.

#### CONCLUSION

Increasing research and publications on clinical laboratory data obtained in the course of workplace medical procedures will facilitate research within the framework of occupational health and safety and will help early diagnosis and treatment of diseases. Fasting blood glucose level should be included among the laboratory parameters required in routine occupational health screenings. Thus, it may be beneficial for the early diagnosis of insulin resistance obesity and type 2 diabetes. Our study contributes original and unique data to the literature in terms of clinical biochemistry knowledge in occupational health. Occupational Health and Safety (OHS) is defined as the science of forecasting, recognizing, evaluating and controlling the dangers that may impair the health and well-being of employees, that may arise in the workplace or that may arise from the workplace, taking into account the possible effects on the society and the

general environment. The main purpose in occupational health and safety is to protect all employees against occupational diseases, work accidents and work-related diseases. In this study, it was aimed to examine the biochemical data included in the routine health examinations, which are one of the main activities related to occupational health and safety, and to draw attention to the importance of these data. The main purpose of the occupational health and safety team and the workplace doctor is to create a healthy working environment workplace. In this way, work accidents, occupational diseases and work-related diseases can be prevented before they occur. For this reason, our research results are important for improving occupational health.

# Acknowledgements Protection of Humans

The authors declare that the procedures were followed according to the regulations established by the Clinical Research and Ethics Committee and to the 2013 Helsinki Declaration of the World Medical Association.

## **Data Confidentiality**

The authors declare having followed the protocols in use at their working center regarding patients' data publication.

## **Conflicts of Interest**

The authors declare no conflicts of interest.

## **Funding Sources**

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

#### REFERENCES

- Bilir, N. (2016). İş Sağlığı ve Güvenliği. 1. Basım, İstanbul, Güneş Tıp Kitabevleri, 1-44.
- Babaoğlu, M.Ö, Yaşar, Ü, Dost, T. ve Kayaalp, S.O. (2009). Kanıta Dayalı Tıp: Kavramlar, Örnekler ve Görüşler. J Med Sci, 29 (5), 1298-305.
- İşyeri Hekimi ve Diğer Sağlık Personelinin Görev, Yetki, Sorumluluk ve Eğitimleri Hakkında Yönetmelik. Resmî Gazete Tarihi: 20.07.2013. Resmî Gazete Sayısı: 28713.
- Orcan, F. (2020). Parametric or Non-parametric: Skewness to Test Normality for Mean Comparison. Int. J. Asst. Tools in Educ, 7(2), 255-265. doi: 10.21449/ijate. 656077
- Emekli, N. ve Yiğitbaşı, T. (2015). Klinik Biyokimya. 1. Basım, İstanbul, Nobel Tıp Kitabevleri.
- Murray, R.K, Bender, D.A, Botham, K.M, Kennelly, P.J, Rodwell, V.W. and Weil, P.A. (2015). Harper'in Biyokimyası. İstanbul: Nobel Tıp Kitabevleri.
- Savas, H.B. ve Gultekin, F. (2017). İnsülin Direnci ve Klinik Önemi. Med J SDU, 24 (3), 116-125.
- İş Sağlığı ve Güvenliği Kanunu. Kanun No: 6331. Resmî Gazete, Tarih: 30.06.2012, Sayı: 28339.
- Arici, C, Ronda-Pérez, E, Tamhid, T, Absekava, K. and Porru S. (2019). Occupational Health and Safety of Immigrant Workers in Italy and Spain: A Scoping Review. Int J Environ Res Public Health, 16 (22), 4416. doi: 10.3390/ijerph1622 4416
- Teufer, B, Ebenberger, A, Affengruber, L, Kien, C, Klerings, I, Szelag, M, Grillich, L. and Griebler, U. (2019). Evidence-

- based Occupational Health and Safety Interventions: A Comprehensive Overview of Reviews. BMJ Open, 11, 9 (12), e032528. doi: 10.1136/bmjopen-2019-032528.
- Min, J, Kim, Y, Lee, S, Jang, T.W, Kim, I. and Song, J. (2019). The Fourth Industrial Revolution and Its Impact on Occupational Health and Safety, Worker's Compensation and Labor Conditions. Saf Health Work, 10 (4), 400-408. doi: 10.1016/j.shaw.2019.09.005.
- 12. Civran G. (2019). Salute E Sicurezza Sul Lavoro in Ambito Portuale E Governo Dei Processi Sociali E Di Sviluppo Economico [Occupational Health and Safety in The Port and The Government of Social Processes and Economic Development]. G Ital Med Lav Ergon, 41 (4), 306-309.
- Kajiki, S, Mori, K, Kobayashi, Y, Hiraoka, K, Fukai, N, Uehara, M, Adi, N.P. and Nakanishi, S. (2020). Developing a global occupational health and safety management system model for Japanese companies. J Occup Health, 62 (1), e12081. doi: 10.1002/1348-9585.12081.
- Almost, J, Caicco Tett, L, Van Den Kerkhof, E, Paré, G, Strahlendorf, P, Noonan, J, Hayes, T, Van Hulle, H, Holden, J, Silva, E Silva, V. and Rochon, A. (2019). Leading Indicators in Occupational Health and Safety Management Systems in Healthcare: A Quasi-Experimental Longitudinal Study. J Occup Environ Med, 61 (12), e486-e496. doi: 10.1097/JOM. 0000000000001738.
- Balasubramanian, B, Meyyazhagan, A, Chinnappan, A.J, Alagamuthu, K.K, Shanmugam, S, Al-Dhabi, N.A, Mohammed Ghilan, A.K, Duraipandiyan, V. and Valan Arasu, M. (2020). Occupational health hazards on workers exposure to lead (Pb): A genotoxicity analysis. J Infect Public Health, 13 (4), 527-531. doi: 10.1016/j.jiph.2019.10.005.