Simüle edilmiş mide asidi maruziyetinin çeşitli dental restoratif materyallerin yüzey pürüzlülüğü üzerindeki etkisi
Year 2025,
Volume: 28 Issue: 3, 405 - 411, 30.09.2025
Aleyna Öykü Akbaşak Sungur
,
Ecem Sancar
,
İrem Sözen Yanık
Abstract
Amaç: Bu çalışmanın amacı, polisajlama sonrası anterior kompozit rezin, lityum disilikat ile güçlendirilmiş cam seramiği ve feldspatik seramik materyallerin yüzey pürüzlülüğü üzerine simüle edilmiş mide asidi maruziyetinin etkilerini değerlendirmektir.
Gereç ve Yöntem: Kırk sekiz örnek hazırlanarak üç gruba ayrıldı: anterior kompozit (G-aenial anterior), lityum disilikat ile güçlendirilmiş cam seramik (GC Initial LiSi) ve feldspatik seramik (Cerec Block). Örnekler 0.06 mol HCl (pH 1.2) içeren simüle edilmiş mide asidi solüsyonuna 37°C’de 96 saat süreyle daldırıldı. Yüzey pürüzlülüğü (Ra), asit maruziyeti öncesi ve sonrası bir profilometre ile ölçüldü. İstatistiksel analizler ANOVA ve eşleştirilmiş t-testleri ile gerçekleştirildi (p<0.05).
Bulgular: Asit maruziyeti öncesinde materyaller arasında yüzey pürüzlülüğü açısından anlamlı bir fark bulunmadı (p>0.05). Asit maruziyeti sonrasında feldspatik seramikler en fazla yüzey pürüzlülüğü artışı gösterdi (p<0.05), ardından kompozit rezin geldi. Lityum disilikat ile güçlendirilmiş seramiklerde ise istatistiksel olarak anlamlı bir değişiklik gözlenmedi (p>0.05).
Sonuç: Feldspatik seramikler mide asidi maruziyetinden en fazla etkilenen materyal olurken, lityum disilikat ile güçlendirilmiş seramikler en yüksek direnci göstermiştir. Bu bulgular, mide asidi maruziyeti riski bulunan hastalar için restoratif materyal seçiminde dikkatli olunması gerektiğini vurgulamaktadır. Gelecek çalışmalar, tükürüğün tamponlama kapasitesi ve mekanik aşınma gibi intraoral faktörleri de dikkate almalıdır.
References
-
1. Gulakar TL, Comert GN, Karaman E, Cakan U, Ozel GS, Ahmet SO. Effect of simulated gastric acid on aesthetical restorative CAD-CAM materials’ microhardness and flexural strength. Niger J Clin Pract 2023;26(11):1505-1511.
-
2. Alnsour MM, Alamoush RA, Silikas N, Satterthwaite JD. The effect of erosive media on the mechanical properties of CAD/CAM composite materials. J Funct Biomater 2024;15(6):292.
-
3. Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 1. Assessment, treatment planning and strategies for the prevention and the passive management of tooth wear. Br Dent J 2012;212(1):17-27.
-
4. Wang J, Zhou Y, Lei D. Relationship between laryngopharyngeal reflux, gastroesophageal reflux disease, and dental erosion in adult populations: a systematic review. Dig Dis Sci 2025;70(3):1078-1090.
-
5. Hjerppe J, Shahramian K, Rosqvist E, Lassila LVJ, Peltonen J, Närhi TO. Gastric acid challenge of lithium disilicate–reinforced glass–ceramics and zirconia-reinforced lithium silicate glass–ceramic after polishing and glazing—impact on surface properties. Clin Oral Investig 2023;27(12):6865-6877.
-
6. Skalsky Jarkander M, Grindefjord M, Carlstedt K. Dental erosion, prevalence and risk factors among a group of adolescents in Stockholm County. Eur Arch Paediatr Dent 2018;19(1):23-31.
-
7. Qian J, Wu Y, Liu F, Zhu Y, Jin H, Zhang H, Wan Y, Li C, Yu D. An update on the prevalence of eating disorders in the general population: a systematic review and meta-analysis. Eat Weight Disord 2022;27(2):415-428.
-
8. Moazzez R, Bartlett D. Intrinsic causes of erosion. Erosive Tooth Wear 2014;25:180-196.
-
9. Sulaiman TA, Abdulmajeed AA, Shahramian K, Hupa L, Donovan TE, Vallittu P, Närhi TO. Impact of gastric acidic challenge on surface topography and optical properties of monolithic zirconia. Dent Mater 2015;31(12):1445-1452.
-
10. Kulkarni A, Rothrock J, Thompson J. Impact of gastric acid induced surface changes on mechanical behavior and optical characteristics of dental ceramics. J Prosthodont 2020;29(3):207-218.
-
11. Aldamaty MF, Haggag K, Othman HI. Effect of simulated gastric acid on surface roughness of different monolithic ceramics. Al-Azhar J Dent Sci 2020;23(3):327-334.
-
12. Mehta RS, Staller K, Chan AT. Review of gastroesophageal reflux disease. JAMA 2021;325(15):1472-1481.
-
13. Subaşı MG, Alp G, Johnston WM, Yilmaz B. Effects of fabrication and shading technique on the color and translucency of new-generation translucent zirconia after coffee thermocycling. J Prosthet Dent 2018;120(4):603-608.
-
14. Demirkol D, Tuğut F. Comparison of the effect of the same polishing method on the surface roughness of conventional, CAD/CAM milling and 3D printing denture base materials. Cumhuriyet Dent J 2023;26(3):281-286.
-
15. Wierichs RJ, Kramer EJ, Reiss B, Schwendicke F, Krois J, Meyer-Lueckel H, Wolf TG. A prospective, multi-center, practice-based cohort study on all-ceramic crowns. Dent Mater 2021;37(6):1273-1282.
-
16. Kukiattrakoon B, Hengtrakool C, Kedjarune-Leggat U. Chemical durability and microhardness of dental ceramics immersed in acidic agents. Acta Odontol Scand 2010;68(1):1-10.
-
17. İnci MA, Özer H, Özaşık HN, Koç M. The effects of gastric acid on pediatric restorative materials: SEM analysis. J Clin Pediatr Dent 2023;47(2):93-98.
-
18. Sozen Yanik I, Kesim B, Ersu B, Koc Vural U. Do effervescent vitamin tablets affect the surface roughness, microhardness, and color of human enamel and contemporary composite resins? J Prosthodont 2024;33(S1):35-46.
-
19. Alp CK, Gündogdu C, Ahısha CD. The effect of gastric acid on the surface properties of different universal composites: a SEM study. Scanning 2022;2022:9217802.
-
20. Somacal DC, Bellan MC, Monteiro MSG, Oliveira SD, Bittencourt HR, Spohr AM. Effect of gastric acid on the surface roughness and bacterial adhesion of bulk-fill composite resins. Braz Dent J 2022;33(1):94-102.
-
21. Barve D, Dave P, Gulve M, Saquib S, Das G, Sibghatullah M, Chaturvedi S. Assessment of microhardness and color stability of micro-hybrid and nano-filled composite resins. Niger J Clin Pract. 2021;24(10):1499-1505.
-
22. Mok TB, McIntyre J, Hunt D. Dental erosion: in vitro model of wine assessor's erosion. Aust Dent J 2001;46:263-268.
-
23. Belser UC, Macne P, Macne M. Ceramic laminate veneers: continuous evolution of indications. J Esthet Restor Dent 1997;9(4):197-207.
-
24. Wakiaga JM, Brunton P, Silikas N, Glenny AM. Direct versus indirect veneer restorations for intrinsic dental stains. Cochrane Database Syst Rev 2004;(1):CD005401.
-
25. Alnasser M, Finkelman M, Papathanasiou A, Suzuki M, Ghaffari R, Ali A. Effect of acidic pH on surface roughness of esthetic dental materials. J Prosthet Dent 2019;122(4):567.e1-567.e8.
-
26. Milleding P, Wennerberg A, Alaeddin S, Karlsson S, Simon E. Surface corrosion of dental ceramics in vitro. Biomaterials 1999;20(8):733-746.
-
27. May MM, Fraga S, May LG. Effect of milling, fitting adjustments, and hydrofluoric acid etching on the strength and roughness of CAD-CAM glass-ceramics: a systematic review and meta-analysis. J Prosthet Dent 2022;128(6):1190-1200.
-
28. Field J, Waterhouse P, German M. Quantifying and qualifying surface changes on dental hard tissues in vitro. J Dent 2010;38(3):182-190.
-
29. Alhotan A, Alaqeely R, Al-Johani H, Alrobaish S, Albaiz S. Effect of simulated gastric acid exposure on the hardness, topographic, and colorimetric properties of machinable and pressable zirconia-reinforced lithium silicate glass-ceramics. J Prosthet Dent 2024;132(5):625.e1-625.e7.
-
30. Harryparsad A, Dullabh H, Sykes L, Herbst D. The effects of hydrochloric acid on all-ceramic restorative materials: an in-vitro study. S Afr Dent J 2014;69(3):106-111.
Impact of Simulated Gastric Acid Exposure on the Surface Roughness of Various Dental Restorative Materials
Year 2025,
Volume: 28 Issue: 3, 405 - 411, 30.09.2025
Aleyna Öykü Akbaşak Sungur
,
Ecem Sancar
,
İrem Sözen Yanık
Abstract
Objective: This study aimed to evaluate the effects of simulated gastric acid exposure on the surface roughness of anterior composite resin, lithium disilicate-reinforced glass ceramic, and feldspathic ceramic materials after polishing.
Materials and Methods: Forty-eight specimens were prepared and divided into three groups: anterior composite (G-aenial anterior), lithium disilicate-reinforced glass ceramic (GC Initial LiSi), and feldspathic ceramic (Cerec Block). The specimens were immersed in a simulated gastric acid solution (0.06 mol HCl, pH 1.2) at 37°C for 96 hours. Surface roughness (Ra) was measured using a profilometer before and after acid exposure. Statistical analysis was performed using ANOVA and paired t-tests (p<0.05).
Results: Before acid exposure, there was no significant difference in surface roughness among the materials (p>0.05). After acid exposure, feldspathic ceramics exhibited the highest increase in surface roughness (p<0.05), followed by composite resin. Lithium disilicate-reinforced ceramics showed no statistically significant change (p>0.05).
Conclusions: Feldspathic ceramics were the most affected by gastric acid exposure, while lithium disilicate-reinforced ceramics demonstrated the highest resistance. These findings emphasize the importance of material selection for patients at risk of gastric acid exposure. Future studies should consider intraoral factors such as salivary buffering and mechanical wear.
Ethical Statement
We hereby declare that the current study is an in vitro experimental research that did not involve any human participants, human tissues, or animal subjects. As such, it does not require ethical approval in accordance with institutional and international ethical guidelines.
Therefore, no ethics committee approval has been obtained or submitted for this work.
References
-
1. Gulakar TL, Comert GN, Karaman E, Cakan U, Ozel GS, Ahmet SO. Effect of simulated gastric acid on aesthetical restorative CAD-CAM materials’ microhardness and flexural strength. Niger J Clin Pract 2023;26(11):1505-1511.
-
2. Alnsour MM, Alamoush RA, Silikas N, Satterthwaite JD. The effect of erosive media on the mechanical properties of CAD/CAM composite materials. J Funct Biomater 2024;15(6):292.
-
3. Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 1. Assessment, treatment planning and strategies for the prevention and the passive management of tooth wear. Br Dent J 2012;212(1):17-27.
-
4. Wang J, Zhou Y, Lei D. Relationship between laryngopharyngeal reflux, gastroesophageal reflux disease, and dental erosion in adult populations: a systematic review. Dig Dis Sci 2025;70(3):1078-1090.
-
5. Hjerppe J, Shahramian K, Rosqvist E, Lassila LVJ, Peltonen J, Närhi TO. Gastric acid challenge of lithium disilicate–reinforced glass–ceramics and zirconia-reinforced lithium silicate glass–ceramic after polishing and glazing—impact on surface properties. Clin Oral Investig 2023;27(12):6865-6877.
-
6. Skalsky Jarkander M, Grindefjord M, Carlstedt K. Dental erosion, prevalence and risk factors among a group of adolescents in Stockholm County. Eur Arch Paediatr Dent 2018;19(1):23-31.
-
7. Qian J, Wu Y, Liu F, Zhu Y, Jin H, Zhang H, Wan Y, Li C, Yu D. An update on the prevalence of eating disorders in the general population: a systematic review and meta-analysis. Eat Weight Disord 2022;27(2):415-428.
-
8. Moazzez R, Bartlett D. Intrinsic causes of erosion. Erosive Tooth Wear 2014;25:180-196.
-
9. Sulaiman TA, Abdulmajeed AA, Shahramian K, Hupa L, Donovan TE, Vallittu P, Närhi TO. Impact of gastric acidic challenge on surface topography and optical properties of monolithic zirconia. Dent Mater 2015;31(12):1445-1452.
-
10. Kulkarni A, Rothrock J, Thompson J. Impact of gastric acid induced surface changes on mechanical behavior and optical characteristics of dental ceramics. J Prosthodont 2020;29(3):207-218.
-
11. Aldamaty MF, Haggag K, Othman HI. Effect of simulated gastric acid on surface roughness of different monolithic ceramics. Al-Azhar J Dent Sci 2020;23(3):327-334.
-
12. Mehta RS, Staller K, Chan AT. Review of gastroesophageal reflux disease. JAMA 2021;325(15):1472-1481.
-
13. Subaşı MG, Alp G, Johnston WM, Yilmaz B. Effects of fabrication and shading technique on the color and translucency of new-generation translucent zirconia after coffee thermocycling. J Prosthet Dent 2018;120(4):603-608.
-
14. Demirkol D, Tuğut F. Comparison of the effect of the same polishing method on the surface roughness of conventional, CAD/CAM milling and 3D printing denture base materials. Cumhuriyet Dent J 2023;26(3):281-286.
-
15. Wierichs RJ, Kramer EJ, Reiss B, Schwendicke F, Krois J, Meyer-Lueckel H, Wolf TG. A prospective, multi-center, practice-based cohort study on all-ceramic crowns. Dent Mater 2021;37(6):1273-1282.
-
16. Kukiattrakoon B, Hengtrakool C, Kedjarune-Leggat U. Chemical durability and microhardness of dental ceramics immersed in acidic agents. Acta Odontol Scand 2010;68(1):1-10.
-
17. İnci MA, Özer H, Özaşık HN, Koç M. The effects of gastric acid on pediatric restorative materials: SEM analysis. J Clin Pediatr Dent 2023;47(2):93-98.
-
18. Sozen Yanik I, Kesim B, Ersu B, Koc Vural U. Do effervescent vitamin tablets affect the surface roughness, microhardness, and color of human enamel and contemporary composite resins? J Prosthodont 2024;33(S1):35-46.
-
19. Alp CK, Gündogdu C, Ahısha CD. The effect of gastric acid on the surface properties of different universal composites: a SEM study. Scanning 2022;2022:9217802.
-
20. Somacal DC, Bellan MC, Monteiro MSG, Oliveira SD, Bittencourt HR, Spohr AM. Effect of gastric acid on the surface roughness and bacterial adhesion of bulk-fill composite resins. Braz Dent J 2022;33(1):94-102.
-
21. Barve D, Dave P, Gulve M, Saquib S, Das G, Sibghatullah M, Chaturvedi S. Assessment of microhardness and color stability of micro-hybrid and nano-filled composite resins. Niger J Clin Pract. 2021;24(10):1499-1505.
-
22. Mok TB, McIntyre J, Hunt D. Dental erosion: in vitro model of wine assessor's erosion. Aust Dent J 2001;46:263-268.
-
23. Belser UC, Macne P, Macne M. Ceramic laminate veneers: continuous evolution of indications. J Esthet Restor Dent 1997;9(4):197-207.
-
24. Wakiaga JM, Brunton P, Silikas N, Glenny AM. Direct versus indirect veneer restorations for intrinsic dental stains. Cochrane Database Syst Rev 2004;(1):CD005401.
-
25. Alnasser M, Finkelman M, Papathanasiou A, Suzuki M, Ghaffari R, Ali A. Effect of acidic pH on surface roughness of esthetic dental materials. J Prosthet Dent 2019;122(4):567.e1-567.e8.
-
26. Milleding P, Wennerberg A, Alaeddin S, Karlsson S, Simon E. Surface corrosion of dental ceramics in vitro. Biomaterials 1999;20(8):733-746.
-
27. May MM, Fraga S, May LG. Effect of milling, fitting adjustments, and hydrofluoric acid etching on the strength and roughness of CAD-CAM glass-ceramics: a systematic review and meta-analysis. J Prosthet Dent 2022;128(6):1190-1200.
-
28. Field J, Waterhouse P, German M. Quantifying and qualifying surface changes on dental hard tissues in vitro. J Dent 2010;38(3):182-190.
-
29. Alhotan A, Alaqeely R, Al-Johani H, Alrobaish S, Albaiz S. Effect of simulated gastric acid exposure on the hardness, topographic, and colorimetric properties of machinable and pressable zirconia-reinforced lithium silicate glass-ceramics. J Prosthet Dent 2024;132(5):625.e1-625.e7.
-
30. Harryparsad A, Dullabh H, Sykes L, Herbst D. The effects of hydrochloric acid on all-ceramic restorative materials: an in-vitro study. S Afr Dent J 2014;69(3):106-111.