Research Article
PDF Mendeley EndNote BibTex Cite

HOW IMPORTANT ARE THE IMPLANT INCLINATION AND THE INFRASTRUCTURE MATERIAL USED IN IMPLANT SUPPORTED FIXED PROSTHESES?

Year 2021, Volume 24, Issue 4, 395 - 402, 03.01.2022
https://doi.org/10.7126/cumudj.1009405

Abstract

Objectives: The aim of this study is to evaluate the stress , which is caused by the fixed prosthesis under oblique forces around dental implants and bone by using different infrastructure materials and different inclusions, by 3-dimensional finite element analysis method. Materials and Methods: The 3D finite element models of the mandible, dental implants and prostheses were prepared. The anterior and posterior implants were designed 10 mm in length and 4.3 mm in diameter. The anterior implant was placed parallel to each model. Posterior implant designed to make inclinations those mesial 17, distal 17, buccal 17, lingual 17. Implant supported fixed restorations were divided into 3 main groups according to the infrastructure materials. These materials were; chromium-cobalt, zirconia, polyetheretherketone (PEEK). In each model, a total of 500 N oblique force was applied from the buccal tubercle crests to the buccolingual direction at an angle of 30 degrees to the long axis of the tooth. Maximum principal stress and minimum principal stress values in the bone models were taken. In addition, maximum von Mises stress values were obtained from implants and substructure materials. Results: When the stress findings in the mandible during oblique loading were evaluated, it was found that the stresses on the cortical bone were higher than the stresses on the trabecular bone. It was observed that the highest stress values occurred in the implants. Conclusions: It is thought that chromium-cobalt and zirconia-based ceramic bridge restorations are more positive in terms of stress distribution than PEEK-based ceramic bridge restorations.

References

  • 1. Pita MS, Anchieta RB, Ricardo Bara˜o VA, Garcia IR, Pedrazzi V, Assunca˜o WG. Prosthetic platforms in implant dentistry. J Craniofac Surg 2011;22(6):2327-31.
  • 2. Barbin T, Silva LDR, Daniele Valente Velôso DV, Borges GA, Camacho Presotto AG, Ricardo Barão VA, Groppo FC, Mesquita MF. Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses. J Adv Prosthodont 2020;12(6):329-37.
  • 3. Misch CE. Dental implant prosthetics. 2nd ed. St. Louis; Elsevier Mosby; 2014.
  • 4. Payer M, Kirmeier R, Jakse N, Pertl C, Wegscheider W, Lorenzoni M. Surgical factors influencing mesiodistal implant angulation. Clin Oral Impl Res 2008;19(3):265-70.
  • 5. Satoh T, Maeda Y, Komiyama Y. Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. Int J Oral Maxillofac Implants 2005;20(4):533-9.
  • 6. Watanabe F, Hata Y, Komatsu S, Ramos TC, Fukuda H. Finite element analysis of the influence of implant inclination, loading position, and load direction on stres distribution. Odontology 2003; 91(1):31-6. 7. Abduo J, Lyons K. Clinical considerations for increasing occlusal vertical dimension: a review. Aust Dent J 2012;57(1):2-10.
  • 8. Tribst JPM, de Morais DC, Alonso AA, de Oliveira Dal Piva AM, Souto Borges AL. Comparative three-dimensional finite element analysis of implantsupported fixed complete arch mandibular prostheses in two materials. J Indian Prosthodont Soc 2017;17(3):255-60.
  • 9. Yildirim M, Edelhoff D, Hanisch O, Spiekermann H. Ceramic abutments - a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000;20(2):80-91.
  • 10. Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in cfr-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med 2010;21(7):2079-85.
  • 11. Zoidis, P. The all-on-4 modified polyetheretherketone treatment approach: a clinical report. J Prosthet Dent 2018;119(4):516-21.
  • 12. Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edelhoff D, Schmidlin PR. Three-unit reinforced poly ether ether ketone composite FDPs: influence of fabrication method on load bearing capacity and failure types. J Dent Mater 2015;34(1):7-12.
  • 13. Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Hämmerle CHF, Fischer J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater 2010;26(6):553-9.
  • 14. Schwitalla AD, Abou-Emara M, Zimmermann T, Spintig T, Beuer F, Lackmann J, Muller WD. The applicability of PEEK-based abutment screws. J Mech Behav Biomed Mater 2016;63:244-51. 15. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60(1):12-9.
  • 16. Wataha JC, Messer RL. Casting alloys. Dent Clin North Am 2004;48(2):499-512.
  • 17. Shadid RM , Sadaqah NR, Abu-Naba’a L, Al-Omari WM. Porcelain fracture of metal-ceramic tooth-supported and implant-supported restorations: a review. Open J Stomatol 2013;3(8):411-8. 18. Sannino G, Pozzi A, Schiavetti R, Barlattani A. Stress distribution on a three-unit implant-supported zirconia framework. A 3D finite element analysis and fatigue test. Oral Implantol (Rome) 2012;5(1): 11–20.
  • 19. De Rossi M, Santos CM, Miglioranca R, Regalo SC. All on four® fixed implant support rehabilitation: a masticatory function study. Clin Implant Dent Relat Res 2014;16(4):594-600. 20. Natali AN, Hart RT, Pavan PG, Knets I. Mechanics of bone tissue. In: Natali AN, editor. Dental biomechanics. London; Taylor and Francis Group; 2003. p.2-17.
  • 21. Bhering, CL, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RL, Barao VA. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: a prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl 2016;69:715-25.
  • 22. Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants: A finite element analysis. J Prosthet Dent 2018;119(3): 417-25.
  • 23. Ozan O, Kurtulmus-Yilmaz S. Biomechanical comparison of different implant inclinations and cantilever lengths in all-on-4 treatment concept by three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2018;33(1): 64-71.
  • 24. Brizuela-Velasco A, Perez-Pevida E, Jimenez-Garrudo A, Gil-Mur FJ, Manero JM, Punset-Fuste M, Chávarri-Prado D, Diéguez-Pereira M, Monticelli F. Mechanical characterisation and biomechanical and biological behaviours of Ti-Zr binary-alloy dental implants. Biomed Res Int 2017; ID 2785863.
  • 25. Marcian P, Borak L, Valasek J, Kaiser J, Florian Z, Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study. J Biomech 2014;47(16):3830-6.
  • 26. Lee KS, Shin SW, Lee SP, Kim JE, Kim JH, Lee JY. Comparative Evaluation of a four-implant-supported polyetherketoneketone framework prosthesis: a three-dimensional finite element analysis based on cone beam computed tomography and computer aided design. Int J Prosthodont 2017;30(6):581-5.
  • 27. Erkmen E, Meric G, Kurt A, Tunc Y, Eser A. Biomechanical comparison of implant retained fixed partial dentures with fiber reinforced composite versus conventional metal frameworks: a 3D FEA study. J Mech Behav Biomed Mater 2011;4(1):107-16.
  • 28. Hasan I, Bourauel C, Keilig L, Stark H, Luckerath W. The effect of implant splinting on the load distribution in bone bed around implant-supported fixed prosthesis with different framework materials: a finite element study. Ann Anat 2015;199:43-51.
  • 29. Zampelis A, Rangert B , Heijl L. Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis. J Prosthet Dent 2007;97(6): 35-43.

Year 2021, Volume 24, Issue 4, 395 - 402, 03.01.2022
https://doi.org/10.7126/cumudj.1009405

Abstract

References

  • 1. Pita MS, Anchieta RB, Ricardo Bara˜o VA, Garcia IR, Pedrazzi V, Assunca˜o WG. Prosthetic platforms in implant dentistry. J Craniofac Surg 2011;22(6):2327-31.
  • 2. Barbin T, Silva LDR, Daniele Valente Velôso DV, Borges GA, Camacho Presotto AG, Ricardo Barão VA, Groppo FC, Mesquita MF. Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses. J Adv Prosthodont 2020;12(6):329-37.
  • 3. Misch CE. Dental implant prosthetics. 2nd ed. St. Louis; Elsevier Mosby; 2014.
  • 4. Payer M, Kirmeier R, Jakse N, Pertl C, Wegscheider W, Lorenzoni M. Surgical factors influencing mesiodistal implant angulation. Clin Oral Impl Res 2008;19(3):265-70.
  • 5. Satoh T, Maeda Y, Komiyama Y. Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. Int J Oral Maxillofac Implants 2005;20(4):533-9.
  • 6. Watanabe F, Hata Y, Komatsu S, Ramos TC, Fukuda H. Finite element analysis of the influence of implant inclination, loading position, and load direction on stres distribution. Odontology 2003; 91(1):31-6. 7. Abduo J, Lyons K. Clinical considerations for increasing occlusal vertical dimension: a review. Aust Dent J 2012;57(1):2-10.
  • 8. Tribst JPM, de Morais DC, Alonso AA, de Oliveira Dal Piva AM, Souto Borges AL. Comparative three-dimensional finite element analysis of implantsupported fixed complete arch mandibular prostheses in two materials. J Indian Prosthodont Soc 2017;17(3):255-60.
  • 9. Yildirim M, Edelhoff D, Hanisch O, Spiekermann H. Ceramic abutments - a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000;20(2):80-91.
  • 10. Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in cfr-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med 2010;21(7):2079-85.
  • 11. Zoidis, P. The all-on-4 modified polyetheretherketone treatment approach: a clinical report. J Prosthet Dent 2018;119(4):516-21.
  • 12. Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edelhoff D, Schmidlin PR. Three-unit reinforced poly ether ether ketone composite FDPs: influence of fabrication method on load bearing capacity and failure types. J Dent Mater 2015;34(1):7-12.
  • 13. Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Hämmerle CHF, Fischer J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater 2010;26(6):553-9.
  • 14. Schwitalla AD, Abou-Emara M, Zimmermann T, Spintig T, Beuer F, Lackmann J, Muller WD. The applicability of PEEK-based abutment screws. J Mech Behav Biomed Mater 2016;63:244-51. 15. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60(1):12-9.
  • 16. Wataha JC, Messer RL. Casting alloys. Dent Clin North Am 2004;48(2):499-512.
  • 17. Shadid RM , Sadaqah NR, Abu-Naba’a L, Al-Omari WM. Porcelain fracture of metal-ceramic tooth-supported and implant-supported restorations: a review. Open J Stomatol 2013;3(8):411-8. 18. Sannino G, Pozzi A, Schiavetti R, Barlattani A. Stress distribution on a three-unit implant-supported zirconia framework. A 3D finite element analysis and fatigue test. Oral Implantol (Rome) 2012;5(1): 11–20.
  • 19. De Rossi M, Santos CM, Miglioranca R, Regalo SC. All on four® fixed implant support rehabilitation: a masticatory function study. Clin Implant Dent Relat Res 2014;16(4):594-600. 20. Natali AN, Hart RT, Pavan PG, Knets I. Mechanics of bone tissue. In: Natali AN, editor. Dental biomechanics. London; Taylor and Francis Group; 2003. p.2-17.
  • 21. Bhering, CL, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RL, Barao VA. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: a prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl 2016;69:715-25.
  • 22. Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants: A finite element analysis. J Prosthet Dent 2018;119(3): 417-25.
  • 23. Ozan O, Kurtulmus-Yilmaz S. Biomechanical comparison of different implant inclinations and cantilever lengths in all-on-4 treatment concept by three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2018;33(1): 64-71.
  • 24. Brizuela-Velasco A, Perez-Pevida E, Jimenez-Garrudo A, Gil-Mur FJ, Manero JM, Punset-Fuste M, Chávarri-Prado D, Diéguez-Pereira M, Monticelli F. Mechanical characterisation and biomechanical and biological behaviours of Ti-Zr binary-alloy dental implants. Biomed Res Int 2017; ID 2785863.
  • 25. Marcian P, Borak L, Valasek J, Kaiser J, Florian Z, Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study. J Biomech 2014;47(16):3830-6.
  • 26. Lee KS, Shin SW, Lee SP, Kim JE, Kim JH, Lee JY. Comparative Evaluation of a four-implant-supported polyetherketoneketone framework prosthesis: a three-dimensional finite element analysis based on cone beam computed tomography and computer aided design. Int J Prosthodont 2017;30(6):581-5.
  • 27. Erkmen E, Meric G, Kurt A, Tunc Y, Eser A. Biomechanical comparison of implant retained fixed partial dentures with fiber reinforced composite versus conventional metal frameworks: a 3D FEA study. J Mech Behav Biomed Mater 2011;4(1):107-16.
  • 28. Hasan I, Bourauel C, Keilig L, Stark H, Luckerath W. The effect of implant splinting on the load distribution in bone bed around implant-supported fixed prosthesis with different framework materials: a finite element study. Ann Anat 2015;199:43-51.
  • 29. Zampelis A, Rangert B , Heijl L. Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis. J Prosthet Dent 2007;97(6): 35-43.

Details

Primary Language English
Subjects Health Care Sciences and Services
Published Date Kış
Journal Section Original Research Articles
Authors

Afra Eda KARADAYI YÜZÜKCÜ
0000-0002-2071-5092
Türkiye


Kaan YERLİYURT (Primary Author)
TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ
0000-0002-9236-2732
Türkiye

Supporting Institution Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number 2020/40
Publication Date January 3, 2022
Application Date October 14, 2021
Acceptance Date November 9, 2021
Published in Issue Year 2021, Volume 24, Issue 4

Cite

EndNote %0 Cumhuriyet Dental Journal HOW IMPORTANT ARE THE IMPLANT INCLINATION AND THE INFRASTRUCTURE MATERIAL USED IN IMPLANT SUPPORTED FIXED PROSTHESES? %A Afra Eda Karadayı Yüzükcü , Kaan Yerliyurt %T HOW IMPORTANT ARE THE IMPLANT INCLINATION AND THE INFRASTRUCTURE MATERIAL USED IN IMPLANT SUPPORTED FIXED PROSTHESES? %D 2022 %J Cumhuriyet Dental Journal %P 1302-5805-2146-2852 %V 24 %N 4 %R doi: 10.7126/cumudj.1009405 %U 10.7126/cumudj.1009405

Cumhuriyet Dental Journal (Cumhuriyet Dent J, CDJ) is the official publication of Cumhuriyet University Faculty of Dentistry. CDJ is an international journal dedicated to the latest advancement of dentistry. The aim of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of dentistry. First issue of the Journal of Cumhuriyet University Faculty of Dentistry was published in 1998. In 2010, journal's name was changed as Cumhuriyet Dental Journal. Journal’s publication language is English.


CDJ accepts articles in English. Submitting a paper to CDJ is free of charges. In addition, CDJ has not have article processing charges.

Frequency: Four times a year (March, June, September, and December)

IMPORTANT NOTICE

All users of Cumhuriyet Dental Journal should visit to their user's home page through the "https://dergipark.org.tr/tr/user" " or "https://dergipark.org.tr/en/user" links to update their incomplete information shown in blue or yellow warnings and update their e-mail addresses and information to the DergiPark system. Otherwise, the e-mails from the journal will not be seen or fall into the SPAM folder. Please fill in all missing part in the relevant field.

Please visit journal's AUTHOR GUIDELINE to see revised policy and submission rules to be held since 2020.